Welcome to Westonci.ca, the place where your questions are answered by a community of knowledgeable contributors. Connect with a community of experts ready to help you find solutions to your questions quickly and accurately. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
What is the magnitude and direction of the PQ−→− with tail and head points P(-6, 0) and Q(2, 4)? magnitude = √(64+16) = √80 = appr 8.9 , ruling out c.
hope this helps
The magnitude of PQ is 8.9 and PQ is making an angle of 26.57° so 8.9 units, 26.6° north of east will be the correct answer.
What is a vector?
A vector is a quantity in which direction and magnitude both matters called a vector.
A vector joining by two points (x₁,y₁) and (x₂,y₂) will be (x₂-x₁)[tex]\hat{i}[/tex] + (y₂-y₁)[tex]\hat{j}[/tex]
The magnitude of this vector will be
[tex]\sqrt{(x_2-x_1)^2+(y_2-y_1)^2[/tex]
The direction of this vector will be
[tex]\\tan^{-1}(\frac{y_2-y_1}{x_2-x_1)}[/tex]
Given P(-6,0) and Q(2,4) so vector joining by
[tex]\vec{PQ}[/tex] = [2-(-6)][tex]\vec{i}[/tex] + [4-0][tex]\vec{j}[/tex]
[tex]\vec{PQ}[/tex] = 8[tex]\vec{i}[/tex] + 4[tex]\vec{j}[/tex]
now, the magnitude [tex]\vec{PQ}[/tex] will be
⇒ [tex]\sqrt{(8^2+4^2)}[/tex]
⇒ 8.944
The direction of the vector [tex]\vec{PQ}[/tex] will be
⇒ [tex]\tan^{-1}(\frac{4}{8})[/tex]
⇒26.57°
So, the magnitude of PQ is around 8.944 and the direction is 26.57° from the positive x axis so it's north of the east.
For more information about vector
https://brainly.com/question/13322477
#SPJ5
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thank you for using Westonci.ca. Come back for more in-depth answers to all your queries.