Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
_s = 37.77 m / s
Explanation:
This is an exercise of the Doppler effect that the change in the frequency of the sound due to the relative speed of the source and the observer, in this case the observer is still and the source is the one that moves closer to the observer, for which relation that describes the process is
f ’= f₀ [tex]\frac{v}{v - v_s}[/tex]
where d ’= 530 Make
when the ambulance passes away from the observer the relationship is
f ’’ = f₀ [tex]\frac{v}{v + v_s}[/tex]
where d ’’ = 424 beam
let's write the two expressions
f ’ (v-v_s) = fo v
f ’’ (v + v_s) = fo v
let's solve the system, subtract the two equations
v (f ’- f’ ’) - v_s (f’ + f ’’) = 0
v_s = v [tex]\frac{ f' - f''}{ f' + f''}[/tex]
the speed of sound is v = 340 m / s
let's calculate
v_s = 340 [tex](\frac{ 530 -424}{530+424} )[/tex]
v_s = 340 [tex](\frac{106}{954}[/tex])
v_s = 37.77 m / s
We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.