Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
Answer:
[tex]Volume = \frac{384}{7}\pi[/tex]
Step-by-step explanation:
Given (Missing Information):
[tex]y = x^\frac{3}{2}[/tex]; [tex]y = 8[/tex]; [tex]x=0[/tex]
Required
Determine the volume
Using Shell Method:
[tex]V = 2\pi \int\limits^a_b {p(y)h(y)} \, dy[/tex]
First solve for a and b.
[tex]y = x^\frac{3}{2}[/tex] and [tex]y = 8[/tex]
Substitute 8 for y
[tex]8 = x^\frac{3}{2}[/tex]
Take 2/3 root of both sides
[tex]8^\frac{2}{3} = x^{\frac{3}{2}*\frac{2}{3}}[/tex]
[tex]8^\frac{2}{3} = x[/tex]
[tex]2^{3*\frac{2}{3}} = x[/tex]
[tex]2^2 = x[/tex]
[tex]4 =x[/tex]
[tex]x = 4[/tex]
This implies that:
[tex]a = 4[/tex]
For [tex]x=0[/tex]
This implies that:
[tex]b=0[/tex]
So, we have:
[tex]V = 2\pi \int\limits^a_b {p(y)h(y)} \, dy[/tex]
[tex]V = 2\pi \int\limits^4_0 {p(y)h(y)} \, dy[/tex]
The volume of the solid becomes:
[tex]V = 2\pi \int\limits^4_0 {x(8 - x^{\frac{3}{2}}}) \, dx[/tex]
Open bracket
[tex]V = 2\pi \int\limits^4_0 {8x - x.x^{\frac{3}{2}}} \, dx[/tex]
[tex]V = 2\pi \int\limits^4_0 {8x - x^{\frac{2+3}{2}}} \, dx[/tex]
[tex]V = 2\pi \int\limits^4_0 {8x - x^{\frac{5}{2}}} \, dx[/tex]
Integrate
[tex]V = 2\pi * [{\frac{8x^2}{2} - \frac{x^{1+\frac{5}{2}}}{1+\frac{5}{2}}]\vert^4_0[/tex]
[tex]V = 2\pi * [{4x^2 - \frac{x^{\frac{2+5}{2}}}{\frac{2+5}{2}}]\vert^4_0[/tex]
[tex]V = 2\pi * [{4x^2 - \frac{x^{\frac{7}{2}}}{\frac{7}{2}}]\vert^4_0[/tex]
[tex]V = 2\pi * [{4x^2 - \frac{2}{7}x^{\frac{7}{2}}]\vert^4_0[/tex]
Substitute 4 and 0 for x
[tex]V = 2\pi * ([{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}] - [{4*0^2 - \frac{2}{7}*0^{\frac{7}{2}}])[/tex]
[tex]V = 2\pi * ([{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}] - [0])[/tex]
[tex]V = 2\pi * [{4*4^2 - \frac{2}{7}*4^{\frac{7}{2}}][/tex]
[tex]V = 2\pi * [{64 - \frac{2}{7}*2^2^{*\frac{7}{2}}][/tex]
[tex]V = 2\pi * [{64 - \frac{2}{7}*2^7][/tex]
[tex]V = 2\pi * [{64 - \frac{2}{7}*128][/tex]
[tex]V = 2\pi * [{64 - \frac{2*128}{7}][/tex]
[tex]V = 2\pi * [{64 - \frac{256}{7}][/tex]
Take LCM
[tex]V = 2\pi * [\frac{64*7-256}{7}][/tex]
[tex]V = 2\pi * [\frac{448-256}{7}][/tex]
[tex]V = 2\pi * [\frac{192}{7}][/tex]
[tex]V = [\frac{2\pi * 192}{7}][/tex]
[tex]V = \frac{\pi * 384}{7}[/tex]
[tex]V = \frac{384}{7}\pi[/tex]
Hence, the required volume is:
[tex]Volume = \frac{384}{7}\pi[/tex]
The volume of the solid of revolution generated by revolving the plane region about the y-axis is [tex]\frac{10240\pi}{3}[/tex] cubic units.
How to calculate the volume of a solid of revolution by shell method
Let be [tex]f(x) = x^{5/2}[/tex] and [tex]g(x) = 32[/tex], whose point of intersection is [tex](x,y) = (4, 32)[/tex]. Solid of revolution generated by revolving the plane region about the y-axis is defined by the following formula:
[tex]V = 2\pi\int\limits^{32}_0 {y\cdot g(y)} \, dy[/tex] (1)
If we know that [tex]g(y) = y^{2/5}[/tex], then the volume of the solid of revolution is:
[tex]V = 2\pi\int\limits^{32}_{0} {y^{7/5}} \, dy[/tex]
[tex]V = 2\pi\cdot \left(\frac{5}{12}\cdot y^{12/5}\right)\left|_{0}^{32}[/tex]
[tex]V = \frac{5\pi}{6} \cdot y^{12/5}|\limit_{0}^{32}[/tex]
[tex]V = \frac{5\pi}{6}\cdot 32^{12/5}[/tex]
[tex]V = \frac{10240\pi}{3}[/tex]
The volume of the solid of revolution generated by revolving the plane region about the y-axis is [tex]\frac{10240\pi}{3}[/tex] cubic units. [tex]\blacksquare[/tex]
Remark
The statement is incomplete. Complete form is shown below:
Use the shell method to write and evaluate the definite integral that represents the volume of the solid generated by revolving the plane region about the y-axis. [tex]y = x^{5/2}[/tex], [tex]y = 32[/tex], [tex]x = 0[/tex].
To learn more on solids of revolution, we kindly invite to check this verified question: https://brainly.com/question/338504

We appreciate your time on our site. Don't hesitate to return whenever you have more questions or need further clarification. Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.