Discover a wealth of knowledge at Westonci.ca, where experts provide answers to your most pressing questions. Explore our Q&A platform to find in-depth answers from a wide range of experts in different fields. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
38.09 m
Explanation:
We'll begin by calculating the distance travelled by the car during the reaction time. This can be obtained as follow:
Reaction time (tᵣ) = 0.404 s
Initial velocity (u) = 22.8 m/s,
Distance travelled during the reaction time (sᵣ) =?
sᵣ = utᵣ
sᵣ = 22.8 × 0.404
sᵣ = 9.21 m
Next, we shall determine the distance travelled by the car when the brake was applied. This can be obtained as follow:
Initial velocity (u) = 22.8 m/s
Acceleration (a) = –9 m/s² (since the car is decelerating)
Final velocity (v) = 0 m/s
Distance travelled when the brake was applied (s₆) =?
v² = u² + 2as₆
0² = 22.8² + (2 × –9 × s₆)
0 = 519.84 – 18s₆
Collect like terms
0 – 519.84 = –18s₆
–519.84 = –18s₆
Divide both side by –18
s₆ = –519.84 / –18
s₆ = 28.88 m
Finally, we shall determine the stopping distance of the car, as measured from the point where the driver first notices the red light. This can be obtained as follow:
Distance travelled during the reaction time (sᵣ) = 9.21 m
Distance travelled when the brake was applied (s₆) = 28.88 m
Stopping distance =?
Stopping distance = sᵣ + s₆
Stopping distance = 9.21 + 28.88
Stopping distance = 38.09 m
Thanks for stopping by. We are committed to providing the best answers for all your questions. See you again soon. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.