Get reliable answers to your questions at Westonci.ca, where our knowledgeable community is always ready to help. Get immediate and reliable answers to your questions from a community of experienced professionals on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Answer:
a) The ductility = -30.12%
the negative sign means reduction
Therefore, there is 30.12% reduction
b) the true stress at fracture is 658.26 Mpa
Explanation:
Given that;
Original diameter [tex]d_{o}[/tex] = 12.8 mm
Final diameter [tex]d_{f}[/tex] = 10.7
Engineering stress [tex]\alpha _{E}[/tex] = 460 Mpa
a) determine The ductility in terms of percent reduction in area;
Ai = π/4([tex]d_{o}[/tex] )² ; Ag = π/4([tex]d_{f}[/tex] )²
% = π/4 [ ( ([tex]d_{f}[/tex] )² - ([tex]d_{o}[/tex] )²) / ( π/4 ([tex]d_{o}[/tex] )²) ]
= ( ([tex]d_{f}[/tex] )² - ([tex]d_{o}[/tex] )²) / ([tex]d_{o}[/tex] )² × 100
we substitute
= [( (10.7)² - (12.8)²) / (12.8)² ] × 100
= [(114.49 - 163.84) / 163.84 ] × 100
= - 0.3012 × 100
= -30.12%
the negative sign means reduction
Therefore, there is 30.12% reduction
b) The true stress at fracture;
True stress [tex]\alpha _{T}[/tex] = [tex]\alpha _{E}[/tex] ( 1 + [tex]E_{E}[/tex] )
[tex]E_{E}[/tex] is engineering strain
[tex]E_{E}[/tex] = dL / Lo
= (do² - df²) / df² = (12.8² - 10.7²) / 10.7² = (163.84 - 114.49) / 114.49
= 49.35 / 114.49
[tex]E_{E}[/tex] = 0.431
so we substitute the value of [tex]E_{E}[/tex] into our initial equation;
True stress [tex]\alpha _{T}[/tex] = 460 ( 1 + 0.431)
True stress [tex]\alpha _{T}[/tex] = 460 (1.431)
True stress [tex]\alpha _{T}[/tex] = 658.26 Mpa
Therefore, the true stress at fracture is 658.26 Mpa
Thank you for trusting us with your questions. We're here to help you find accurate answers quickly and efficiently. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.