Westonci.ca is your go-to source for answers, with a community ready to provide accurate and timely information. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
The answer, in short, is that the short leg equals 15 mm, the long leg equals 20 mm, and the hypotenuse equals 25mm. but if you'd like to see how I solved it, here are the steps.
-----------------------------
The Pythagorean theorem (also known as Pythagoras's Theorem) can be used to solve this. This theorem states that one leg or a right triangle squared plus the other side of that same triangle squared equals the hypotenuse of that triangle squared. To put it in equation form, L² + L² = H².
Let's call the longer leg B, the shorter leg A, and the hypotenuse H.
From the question, we know that A = B - 5, and H = B + 5.
So if we put those values into an equation, we have (B - 5)² + B² = (B + 5)²
Now, to solve. Let's square the two terms in parentheses first:
(B² - 5B - 5B + 25) + B² = B² + 5B + 5B + 25
Now combine like terms:
2B² -10B + 25 = B² + 10B + 25
And now we simplify. Subtract 25 from each side:
2B² - 10B = B² + 10B
Subtract B² from each side:
B² - 10B = 10B
Add 10B to each side:
B² = 20B
And finally, divide each side by B:
B = 20
So that's the length of B. Now to find out A and H.
A = B - 5, so A = 15.
H = B + 5, so H = 25.
And your final answer is A = 15mm, B = 20mm, and H = 25mm
-----------------------------
The Pythagorean theorem (also known as Pythagoras's Theorem) can be used to solve this. This theorem states that one leg or a right triangle squared plus the other side of that same triangle squared equals the hypotenuse of that triangle squared. To put it in equation form, L² + L² = H².
Let's call the longer leg B, the shorter leg A, and the hypotenuse H.
From the question, we know that A = B - 5, and H = B + 5.
So if we put those values into an equation, we have (B - 5)² + B² = (B + 5)²
Now, to solve. Let's square the two terms in parentheses first:
(B² - 5B - 5B + 25) + B² = B² + 5B + 5B + 25
Now combine like terms:
2B² -10B + 25 = B² + 10B + 25
And now we simplify. Subtract 25 from each side:
2B² - 10B = B² + 10B
Subtract B² from each side:
B² - 10B = 10B
Add 10B to each side:
B² = 20B
And finally, divide each side by B:
B = 20
So that's the length of B. Now to find out A and H.
A = B - 5, so A = 15.
H = B + 5, so H = 25.
And your final answer is A = 15mm, B = 20mm, and H = 25mm
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.