Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get accurate and detailed answers to your questions from a dedicated community of experts on our Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Answer: 0.44
Step-by-step explanation:
First, let's count the total number of four-digit numbers.
Let's think it as four empty slots:
_ _ _ _
In each slot, we can put a single digit.
In the first slot, we have 9 options {1, 2, 3, 4, 5, 6, 7, 8, 9}
The zero is not an option here, because if there was a 0, this would be a 3 digit number, then the 0 can not be in the first slot.
For the second slot we have 10 options {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
for the third slot we have 10 options {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
for the fourth slot we have 10 options {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}
The total number of combinations is equal to the product between the numbers of options for each slot, this means that we have:
Combinations = 9*10*10*10 = 9000
So there are 9000 different 4 digit numbers.
Now we want to find the probability of selecting a number at random that is equal or smaller than 5000.
Let's see the number of 4-digit numbers that are equal or smaller than 5000.
The smallest 4-digit number is 1000.
Then the number of numbers between 1000 and 5000 is:
5000 - 1000 = 4000
This means that there are 4000 4-digit numbers that are equal or smaller than 5000.
Now, the probability of selecting one of them at random is equal to the quotient between the number of 4-digit numbers that meet the condition (4000) and the total number of 4-digits (9000)
Then te probability is:
P = 4000/9000 = 4/9 = 0.44
T
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. We hope this was helpful. Please come back whenever you need more information or answers to your queries. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.