Westonci.ca is the ultimate Q&A platform, offering detailed and reliable answers from a knowledgeable community. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.

Given right triangle ABC with altitude BD drawn to hypotenuse AC. If AB = 3 and AC = 9, what is the length of AD? (Note: the figure is not drawn to scale.)


Given Right Triangle ABC With Altitude BD Drawn To Hypotenuse AC If AB 3 And AC 9 What Is The Length Of AD Note The Figure Is Not Drawn To Scale class=

Sagot :

Answer:

The length of AD is 1 unit

Step-by-step explanation:

Let us solve the question

In Δ ABC

∠B is a right angle

BD is perpendicular to the hypotenuse AC

(AB)² = AD × AC ⇒ rule

∵ AB = 3 units

∵ AC = 9 units

∵ AD = x

→ Substitute them in the rule above

(3)² = x × 9

∴ 9 = 9x

→ Divide both sides by 9

∵ [tex]\frac{9}{9}[/tex] = [tex]\frac{9x}{9}[/tex]

1 = x

The length of AD is 1 unit

We hope this information was helpful. Feel free to return anytime for more answers to your questions and concerns. We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.