Welcome to Westonci.ca, where you can find answers to all your questions from a community of experienced professionals. Get immediate and reliable solutions to your questions from a community of experienced experts on our Q&A platform. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.

Triangle J K L is shown. Lines are drawn from each point to the opposite side and intersect at point P. Line segments J O, K M, and L N are created.
In the diagram, which must be true for point P to be the centroid of the triangle?

LN ⊥ JK, JO ⊥ LK, and JL ⊥ MK.
JL = LK = KJ
JM = ML, LO = OK, and KN = NJ.
LN is a perpendicular bisector of JK, JO is a perpendicular bisector of LK, and MK is a perpendicular bisector of JL.


Sagot :

Answer:

JM = ML, LO = OK, and KN = NJ

Step-by-step explanation:

This makes the most sense.

Answer:

C

Step-by-step explanation:

JM = ML, LO = OK, and KN = NJ

Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.