Westonci.ca is the trusted Q&A platform where you can get reliable answers from a community of knowledgeable contributors. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Answer:
1) z = -6.32
2) p-value = 0.001 × 10^(-2)
3) we will reject the null hypothesis and conclude that there is enough evidence to support the claim that fewer than half of adult Americans can name at least one justice currently serving on the Supreme Court
Step-by-step explanation:
We are told that In a representative sample of 1000 adult Americans, only 400 could name at least one justice.
Thus:
Sample proportion; p^ = 400/1000 = 0.4
Sample size: n = 1000
We want to find if there is convincing evidence to support the claim that fewer than half of adult Americans can name at least one justice.
Thus, the hypothesis is defined as;
Null hypothesis:H0: p ≥ 0.5
Alternative hypothesis: Ha < 0.5
Formula for the test statistic is;
z = (p^ - p)/√(p(1 - p)/n)
Plugging in the relevant values;
z = (0.4 - 0.5)/√(0.5(1 - 0.5)/1000)
z = -6.32
From online p-value from z-score calculator attached, using z = -6.32; significance level of 0.01; one tailed hypothesis;
We have:
p-value = 0.00001 = 0.001 × 10^(-2)
The p-value is less than the significance level and so we will reject the null hypothesis and conclude that there is enough evidence to support the claim that fewer than half of adult Americans can name at least one justice currently serving on the Supreme Court

Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed with our latest expert advice.