Westonci.ca is the premier destination for reliable answers to your questions, brought to you by a community of experts. Discover comprehensive solutions to your questions from a wide network of experts on our user-friendly platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Answer:
(¹/₂, 0)
Step-by-step explanation:
2x + 5y = 1 ⇒ 2x = 1 - 5y
y = 2xy + 5
y = (1 - 5y)y + 5
y = y - 5y² + 5
5y² = 5
y² = 1
y₁ = 1 ∨ y₂ = -1
2x₁ = 1 -5(1) 2x₂ = 1 - 5(-1)
2x₁ = 1 - 5 2x₂ = 1 + 5
2x₁ = -4 2x₂ = 6
x₁ = -2 x₂ = 3
Midpoint:
[tex]M=\left(\frac{x_1+x_2}2\ ,\ \frac{y_1+y_2}2\right)=\left(\frac{-2+3}2\ ,\ \frac{1+(-1)}2\right)=\left(\frac12\ ,\ 0\right)[/tex]
The coordinates of the midpoint of the line AB is (0, 1/2).
The equation of the curve is given by y = 2xy + 5.
The equation of the line is given by 2x + 5y = 1.
We have to first find the point of intersection between the curve and the line and then find the coordinates of the midpoint of line AB where A and B is the point of intersection between the curve and the line.
What is the formula for finding the coordinates of a point that divides a given line in the ratio m:n?
If C(x, y) divides a line AB in m:n then we have,
[tex]x = \frac{mx_2 +nx_1}{m+n},~~~y =\frac{my_2+ny_1}{m+n}[/tex]
And if C(x,y) is the midpoint then m = n.
we have,
[tex]x = \frac{x_2 +x_1}{2},~~~y =\frac{y_2+y_1}{2}[/tex]
Where x and y are the coordinates of the midpoint o the line AB.
Find the point of intersection between the line and the curve.
y = 2xy + 5............(1)
2x + 5y = 1..............(2)
From (2) we have,
2x = 1 - 5yx = (1-5y) / 2..........(3)
Substituting (3) in (1).
[tex]y =2\frac{(1-5y)}{2}y + 5\\\\y =\frac{2y-10y^2}{2} + 5\\\\2y = 2y - 10y^2 + 10\\\\10y^2 = 10\\\\y^2 = 1[/tex]
So we have,
y = 1 and y = -1
Puttin y = 1 in (3) we get,
x = (1 - 5) / 2 = - 4 / 2 = -2
Puttin y = -1 in (3) we get,
x = {1-5(-1)} / 2 = (1+5) / 2 = 6 / 2 = 3
Now we have two points of intersection A( 1, -2 ) and B( -1, 3 ).
Finding the coordinates of the midpoint of the line AB.
we have,
[tex]A(1, -2) = A (x_1, y_1)~~and~~B(-1, 3) = B(x_2, y_2)[/tex]
Substituting in the given equation.
[tex]x = \frac{x_2 +x_1}{2},~~~y =\frac{y_2+y_1}{2}\\\\x = \frac{-1 +1}{2},~~~y =\frac{3+(-2)}{2}\\\\x = 0,~~~y=\frac{1}{2}[/tex]
So the coordinates of the midpoint is (x,y) = ( 0, 1/2 ).
Learn more about the midpoint of a given line here:
https://brainly.com/question/24493570
#SPJ2
We appreciate your time. Please come back anytime for the latest information and answers to your questions. We appreciate your visit. Our platform is always here to offer accurate and reliable answers. Return anytime. Thank you for visiting Westonci.ca. Stay informed by coming back for more detailed answers.