Discover a world of knowledge at Westonci.ca, where experts and enthusiasts come together to answer your questions. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.

How do I convert a quadratic function to vertex for by completing the square?

Sagot :

Given a quadratic function of the form f(x) = ax^2 + bx + c, you can rewrite it in what is called "standard form," which makes it easy to see where the vertex is just by looking at the equation. Because you did not provide an example, I will demonstrate it with all variables. Can you see where I complete the square?
[tex]f(x) = ax^2 + bx+c\\ \frac{f(x)}{a}=x^2+\frac{b}{a}x+\frac{c}{a}\\ \frac{f(x)}{a}=x^2+\frac{b}{a}x+(\frac{b}{2a})^2-(\frac{b}{2a})^2+\frac{c}{a}\\ \frac{f(x)}{a}=(x+\frac{b}{2a})^2-(\frac{b}{2a})^2+\frac{c}{a}\\ \frac{f(x)}{a}=(x+\frac{b}{2a})^2-\frac{b^2}{4a^2}+\frac{c}{a}\\ f(x)=a(x+\frac{b}{2a})^2-\frac{ab^2}{4a^2}+\frac{ca}{a}\\ f(x)=a(x+\frac{b}{2a})^2-\frac{b^2}{4a}+\frac{4ca}{4a}\\ f(x)=a(x+\frac{b}{2a})^2+ \frac{4ac-b^2}{4a} [/tex]
In reality, it will probably not be so complicated. It looks like a lot here, but that's because it's all variables. When you use this method, you will end up with something resembling f(x) = a(x-h)^2 + k. The vertex will be (h,k). Notice that h is SUBTRACTED from x! That means if you have a function like f(x) = (x-2)^2 + 3, the vertex is (2,3), not (-2,3).
Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.