Westonci.ca is the premier destination for reliable answers to your questions, provided by a community of experts. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
[tex]a+b=28 \\\\\ a=2b+4 \\\\ 2b+4+b=28\\\\ 3b=28-4\\\\3b=24 \\\\ \boxed{b=\frac{24}{3}=8} \\\\a=2*8+4\\\\a=16+4 \\\\ \boxed{a=20}[/tex]
Answer:
Let x be the first group of students in a class and y be the second group of students in the class.
As per the statement:
As, the teacher separated her class of twenty-eight students in two groups.
⇒ x+y = 28 ......[1]
Also, one group has 4 more than twice as many as the other group.
⇒ x = 4 + 2y ......[2]
Now, substitute the equation [2] in [1]; we have
[tex]4+2y+y = 28[/tex]
Combine like terms;
4 + 3y = 28
Subtract 4 from both sides we get;
[tex]4+3y-4 = 28-4[/tex]
Simplify:
3y = 24
Divide by 3 to both sides we get;
[tex]\frac{3y}{3} = \frac{24}{3}[/tex]
Simplify:
y = 8
Now, substitute the value of y in equation [2] to solve for x;
[tex]x = 4 + 2(8) = 4 +16 = 20[/tex]
or
x = 20
therefore, the number of students in each group are 20 and 8.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.