Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Discover reliable solutions to your questions from a wide network of experts on our comprehensive Q&A platform. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To get rid of [tex] x^{3} [/tex], you have to take the third root of both sides:
[tex] \sqrt[3]{x^{3}} = \sqrt[3]{1} [/tex]
But that won't help you with understanding the problem. It is better to write [tex] x^{3}-1 [/tex] as a product of 2 polynomials:
[tex] x^{3}-1 = (x-1)\cdot (x^{2} +x +1) [/tex]
From this we know, that [tex] x-1 = 0 => x = 1 [/tex] is the solution. Another solutions (complex roots) are the roots of quadratic equation.
[tex] \sqrt[3]{x^{3}} = \sqrt[3]{1} [/tex]
But that won't help you with understanding the problem. It is better to write [tex] x^{3}-1 [/tex] as a product of 2 polynomials:
[tex] x^{3}-1 = (x-1)\cdot (x^{2} +x +1) [/tex]
From this we know, that [tex] x-1 = 0 => x = 1 [/tex] is the solution. Another solutions (complex roots) are the roots of quadratic equation.
[tex]x^3-1=0\\
(x-1)(x^2+x+1)=0\\
x-1=0\\
x=1\\
x^2+x+1=0\\
x^2+x+\frac{1}{4}+\frac{3}{4}=0\\
(x+\frac{1}{2})^2=-\frac{3}{4}\\
x+\frac{1}{2}=\sqrt{-\frac{3}{4}} \vee x+\frac{1}{2}=-\sqrt{-\frac{3}{4}}\\
x=-\frac{1}{2}+i\frac{\sqrt3}{2} \vee x=-\frac{1}{2}-i\frac{\sqrt3}{2}\\
x=-\frac{1-i\sqrt3}{2} \vee x=-\frac{1+i\sqrt3}{2}\\\\
x=\{1,-\frac{1-i\sqrt3}{2},-\frac{1+i\sqrt3}{2} \}[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.