Discover the answers you need at Westonci.ca, where experts provide clear and concise information on various topics. Explore a wealth of knowledge from professionals across different disciplines on our comprehensive platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
First we have to find midpoint of R and S.
We can use formula such for it.[tex]Qx= \frac{Rx+Sx}{2}[/tex] and [tex]Qy= \frac{Ry+Sy}{2}[/tex].
We obtained coordinates of point Q
[tex]Qx= \frac{-3+5}{2}=1[/tex] and [tex]Qy= \frac{5+11}{2}=8 [/tex]
Now, we can find the line equation using formula y=ax+b.
We can substitute coordinates of P and Q to this formula and solving system of equation get the answer.
After substituting we obtaind such system
[tex]\left \{ {{20=7a+b } \atop {8=a+b}} \right. [/tex]
From the system of equation we obtain result
[tex] \left \{ {{a=2} \atop {b=6}} \right. [/tex]
Now we can put our resuts to general line equation.
[tex]y=2x+6[/tex]
We can use formula such for it.[tex]Qx= \frac{Rx+Sx}{2}[/tex] and [tex]Qy= \frac{Ry+Sy}{2}[/tex].
We obtained coordinates of point Q
[tex]Qx= \frac{-3+5}{2}=1[/tex] and [tex]Qy= \frac{5+11}{2}=8 [/tex]
Now, we can find the line equation using formula y=ax+b.
We can substitute coordinates of P and Q to this formula and solving system of equation get the answer.
After substituting we obtaind such system
[tex]\left \{ {{20=7a+b } \atop {8=a+b}} \right. [/tex]
From the system of equation we obtain result
[tex] \left \{ {{a=2} \atop {b=6}} \right. [/tex]
Now we can put our resuts to general line equation.
[tex]y=2x+6[/tex]
[tex] R (-3,5), \ \ \ S (5,11) \ midpoint \ of \ R \ and \ S \\ \\ Midpoint \ Formula \\\\(x,y)= \left ( \frac{x_{1}+x_{2}}{2},\frac {{}y_{1}+y_{2}}{2} \right ) \\ \\Q= \left ( \frac {-3+5}{2},\frac { 5+11}{2} \right ) \\ \\Q= \left ( \frac {2}{2},\frac { 16}{2} \right ) \\ \\Q= \left ( 1 ,8) \right )[/tex]
[tex] the \ equation \ of \ the \ line \ that \ passes \ through \ P(7,20) \ and \ Q (1,8)\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{ 8-20}{1-7 } =\frac{-12}{-6}=2\\\\the \ slope \ intercept \ form \ is : \\ \\ y= mx +b \\\\20=2\cdot 7+b \\\\20=14+b\\\\b=20-14\\b=6\\\\y=2x+6[/tex]
[tex] the \ equation \ of \ the \ line \ that \ passes \ through \ P(7,20) \ and \ Q (1,8)\\\\First \ find \ the \ slope \ of \ the \ line \ thru \ the \ points \: \\ \\ m= \frac{y_{2}-y_{1}}{x_{2}-x_{1} } \\ \\m=\frac{ 8-20}{1-7 } =\frac{-12}{-6}=2\\\\the \ slope \ intercept \ form \ is : \\ \\ y= mx +b \\\\20=2\cdot 7+b \\\\20=14+b\\\\b=20-14\\b=6\\\\y=2x+6[/tex]
Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Find reliable answers at Westonci.ca. Visit us again for the latest updates and expert advice.