At Westonci.ca, we provide reliable answers to your questions from a community of experts. Start exploring today! Discover in-depth answers to your questions from a wide network of professionals on our user-friendly Q&A platform. Get quick and reliable solutions to your questions from a community of experienced experts on our platform.
Sagot :
-- When the ball is at the top, before it's dropped, it has potential energy above the equilibrium position.
Potential energy = (mass) x (gravity) x (height) = (mass) x (G) x (0.5)
As it passes through the equilibrium position, it has kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
How much kinetic energy does it have at the bottom ?
EXACTLY the potential energy that it started out with at the top !
THAT's where the kinetic energy came from.
So the two expressions for energy are equal.
K.E. at the bottom = P.E. at the top.
(1/2) x (mass) x (speed)² = (mass) x (G) x (0.5)
Divide each side by (mass) . . .
(the mass of the ball goes away, and has no effect on the answer !)
(1/2) x (speed)² = (G) x (0.5)
Multiply each side by 2 :
(speed)² = G
speed = √G = √9.8 = 3.13 meters per second, regardless of the mass of the ball !
Potential energy = (mass) x (gravity) x (height) = (mass) x (G) x (0.5)
As it passes through the equilibrium position, it has kinetic energy.
Kinetic energy = (1/2) x (mass) x (speed)²
How much kinetic energy does it have at the bottom ?
EXACTLY the potential energy that it started out with at the top !
THAT's where the kinetic energy came from.
So the two expressions for energy are equal.
K.E. at the bottom = P.E. at the top.
(1/2) x (mass) x (speed)² = (mass) x (G) x (0.5)
Divide each side by (mass) . . .
(the mass of the ball goes away, and has no effect on the answer !)
(1/2) x (speed)² = (G) x (0.5)
Multiply each side by 2 :
(speed)² = G
speed = √G = √9.8 = 3.13 meters per second, regardless of the mass of the ball !
We hope this was helpful. Please come back whenever you need more information or answers to your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Westonci.ca is your trusted source for answers. Visit us again to find more information on diverse topics.