Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To solve for the possible values of [tex]\( k \)[/tex] in the quadratic equation [tex]\( x^2 + kx + 1 = 0 \)[/tex], given that the roots [tex]\( \alpha \)[/tex] and [tex]\( \beta \)[/tex] satisfy [tex]\( \alpha^2 + \beta^2 = 27 \)[/tex], we can follow these steps:
1. Sum and Product of the Roots:
Using Vieta's formulas, for a quadratic equation of the form [tex]\( x^2 + px + q = 0 \)[/tex]:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is given by [tex]\( -p \)[/tex], which in our case is [tex]\( -k \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is given by [tex]\( q \)[/tex], which here is [tex]\( 1 \)[/tex].
So, we have:
[tex]\[ \alpha + \beta = -k \][/tex]
[tex]\[ \alpha \beta = 1 \][/tex]
2. Expressing [tex]\( \alpha^2 + \beta^2 \)[/tex]:
Using the identity that relates the sum and product of the roots to the sum of their squares:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ \alpha^2 + \beta^2 = (-k)^2 - 2(1) \][/tex]
Simplifying this expression:
[tex]\[ \alpha^2 + \beta^2 = k^2 - 2 \][/tex]
3. Given Condition:
We are given that:
[tex]\[ \alpha^2 + \beta^2 = 27 \][/tex]
Set the equation from step 2 equal to 27:
[tex]\[ k^2 - 2 = 27 \][/tex]
4. Solving for [tex]\( k \)[/tex]:
Isolate [tex]\( k^2 \)[/tex]:
[tex]\[ k^2 - 2 = 27 \][/tex]
[tex]\[ k^2 = 29 \][/tex]
Take the square root of both sides:
[tex]\[ k = \pm \sqrt{29} \][/tex]
Therefore, the possible values of [tex]\( k \)[/tex] are:
[tex]\[ k = \sqrt{29} \quad \text{and} \quad k = -\sqrt{29} \][/tex]
1. Sum and Product of the Roots:
Using Vieta's formulas, for a quadratic equation of the form [tex]\( x^2 + px + q = 0 \)[/tex]:
- The sum of the roots [tex]\( \alpha + \beta \)[/tex] is given by [tex]\( -p \)[/tex], which in our case is [tex]\( -k \)[/tex].
- The product of the roots [tex]\( \alpha \beta \)[/tex] is given by [tex]\( q \)[/tex], which here is [tex]\( 1 \)[/tex].
So, we have:
[tex]\[ \alpha + \beta = -k \][/tex]
[tex]\[ \alpha \beta = 1 \][/tex]
2. Expressing [tex]\( \alpha^2 + \beta^2 \)[/tex]:
Using the identity that relates the sum and product of the roots to the sum of their squares:
[tex]\[ \alpha^2 + \beta^2 = (\alpha + \beta)^2 - 2\alpha\beta \][/tex]
Substituting the known values:
[tex]\[ \alpha^2 + \beta^2 = (-k)^2 - 2(1) \][/tex]
Simplifying this expression:
[tex]\[ \alpha^2 + \beta^2 = k^2 - 2 \][/tex]
3. Given Condition:
We are given that:
[tex]\[ \alpha^2 + \beta^2 = 27 \][/tex]
Set the equation from step 2 equal to 27:
[tex]\[ k^2 - 2 = 27 \][/tex]
4. Solving for [tex]\( k \)[/tex]:
Isolate [tex]\( k^2 \)[/tex]:
[tex]\[ k^2 - 2 = 27 \][/tex]
[tex]\[ k^2 = 29 \][/tex]
Take the square root of both sides:
[tex]\[ k = \pm \sqrt{29} \][/tex]
Therefore, the possible values of [tex]\( k \)[/tex] are:
[tex]\[ k = \sqrt{29} \quad \text{and} \quad k = -\sqrt{29} \][/tex]
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. We hope our answers were useful. Return anytime for more information and answers to any other questions you have. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.