At Westonci.ca, we make it easy to get the answers you need from a community of informed and experienced contributors. Join our platform to get reliable answers to your questions from a knowledgeable community of experts. Explore comprehensive solutions to your questions from knowledgeable professionals across various fields on our platform.
Sagot :
To determine which graph corresponds to the given equation [tex]\((x-3)^2 + (y+1)^2 = 9\)[/tex], let's analyze and understand the equation step-by-step.
1. Recognize the Form of the Equation:
The equation [tex]\((x-3)^2 + (y+1)^2 = 9\)[/tex] is in the standard form of a circle's equation [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
2. Identify the Center of the Circle:
The center [tex]\((h, k)\)[/tex] of the circle can be identified by comparing [tex]\((x-3)^2 + (y+1)^2\)[/tex] with [tex]\((x-h)^2 + (y-k)^2\)[/tex]. Here, [tex]\(h = 3\)[/tex] and [tex]\(k = -1\)[/tex]. Thus, the center of the circle is at [tex]\((3, -1)\)[/tex].
3. Determine the Radius of the Circle:
The radius [tex]\(r\)[/tex] is found by taking the square root of the constant on the right side of the equation [tex]\( r^2 = 9\)[/tex]. Therefore, [tex]\( r = \sqrt{9} = 3 \)[/tex].
4. Summary of the Circle's Properties:
- Center: [tex]\((3, -1)\)[/tex]
- Radius: [tex]\(3\)[/tex]
To find which graph corresponds to this circle, look for a graph that has:
- A circle centered at the point [tex]\((3, -1)\)[/tex]
- A radius of 3 units
Once you have a graph that matches these properties, you have successfully identified the correct representation of the given equation.
1. Recognize the Form of the Equation:
The equation [tex]\((x-3)^2 + (y+1)^2 = 9\)[/tex] is in the standard form of a circle's equation [tex]\((x-h)^2 + (y-k)^2 = r^2\)[/tex], where [tex]\((h, k)\)[/tex] is the center of the circle and [tex]\(r\)[/tex] is the radius.
2. Identify the Center of the Circle:
The center [tex]\((h, k)\)[/tex] of the circle can be identified by comparing [tex]\((x-3)^2 + (y+1)^2\)[/tex] with [tex]\((x-h)^2 + (y-k)^2\)[/tex]. Here, [tex]\(h = 3\)[/tex] and [tex]\(k = -1\)[/tex]. Thus, the center of the circle is at [tex]\((3, -1)\)[/tex].
3. Determine the Radius of the Circle:
The radius [tex]\(r\)[/tex] is found by taking the square root of the constant on the right side of the equation [tex]\( r^2 = 9\)[/tex]. Therefore, [tex]\( r = \sqrt{9} = 3 \)[/tex].
4. Summary of the Circle's Properties:
- Center: [tex]\((3, -1)\)[/tex]
- Radius: [tex]\(3\)[/tex]
To find which graph corresponds to this circle, look for a graph that has:
- A circle centered at the point [tex]\((3, -1)\)[/tex]
- A radius of 3 units
Once you have a graph that matches these properties, you have successfully identified the correct representation of the given equation.
Thank you for choosing our service. We're dedicated to providing the best answers for all your questions. Visit us again. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.