Explore Westonci.ca, the leading Q&A site where experts provide accurate and helpful answers to all your questions. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.
Sagot :
Certainly! Let's solve the given problem step by step.
### Problem
We are tasked with solving the expressions
[tex]\[2^{2+1}\][/tex]
and
[tex]\[e^{1-e}\][/tex]
### Step-by-Step Solution
1. Evaluating [tex]\(2^{2+1}\)[/tex]:
- First, let's simplify the exponent [tex]\(2 + 1\)[/tex]:
[tex]\[2 + 1 = 3\][/tex]
- Next, we raise 2 to the power of 3:
[tex]\[2^3 = 2 \times 2 \times 2\][/tex]
- Performing the multiplication:
[tex]\[2 \times 2 = 4\][/tex]
[tex]\[4 \times 2 = 8\][/tex]
- Thus,
[tex]\[2^{2+1} = 8\][/tex]
2. Evaluating [tex]\(e^{1-e}\)[/tex]:
- Here, [tex]\(e\)[/tex] is the base of the natural logarithm, approximately equal to [tex]\(2.71828\)[/tex].
- The expression we need to evaluate is [tex]\(e\)[/tex] raised to the power of [tex]\((1 - e)\)[/tex].
- Numerically, this evaluates to:
[tex]\[e^{1-e} \approx 0.17937407873401723\][/tex]
### Final Answer
- The value of [tex]\(2^{2+1}\)[/tex] is [tex]\(8\)[/tex].
- The value of [tex]\(e^{1-e}\)[/tex] is approximately [tex]\(0.17937407873401723\)[/tex].
Therefore, the results are:
[tex]\[2^{2+1} = 8\][/tex]
[tex]\[e^{1-e} \approx 0.17937407873401723\][/tex]
### Problem
We are tasked with solving the expressions
[tex]\[2^{2+1}\][/tex]
and
[tex]\[e^{1-e}\][/tex]
### Step-by-Step Solution
1. Evaluating [tex]\(2^{2+1}\)[/tex]:
- First, let's simplify the exponent [tex]\(2 + 1\)[/tex]:
[tex]\[2 + 1 = 3\][/tex]
- Next, we raise 2 to the power of 3:
[tex]\[2^3 = 2 \times 2 \times 2\][/tex]
- Performing the multiplication:
[tex]\[2 \times 2 = 4\][/tex]
[tex]\[4 \times 2 = 8\][/tex]
- Thus,
[tex]\[2^{2+1} = 8\][/tex]
2. Evaluating [tex]\(e^{1-e}\)[/tex]:
- Here, [tex]\(e\)[/tex] is the base of the natural logarithm, approximately equal to [tex]\(2.71828\)[/tex].
- The expression we need to evaluate is [tex]\(e\)[/tex] raised to the power of [tex]\((1 - e)\)[/tex].
- Numerically, this evaluates to:
[tex]\[e^{1-e} \approx 0.17937407873401723\][/tex]
### Final Answer
- The value of [tex]\(2^{2+1}\)[/tex] is [tex]\(8\)[/tex].
- The value of [tex]\(e^{1-e}\)[/tex] is approximately [tex]\(0.17937407873401723\)[/tex].
Therefore, the results are:
[tex]\[2^{2+1} = 8\][/tex]
[tex]\[e^{1-e} \approx 0.17937407873401723\][/tex]
We hope you found what you were looking for. Feel free to revisit us for more answers and updated information. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Westonci.ca is committed to providing accurate answers. Come back soon for more trustworthy information.