Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which student found the correct cube root of 216, let's analyze each student's method one by one.
### Hadley's Method
Hadley claims the cube root of 216 is 72 because:
[tex]\[ 216 \div 3 = 72 \][/tex]
However, dividing 216 by 3 does not give us the cube root of 216. The cube root of a number [tex]\(x\)[/tex] is a number [tex]\(y\)[/tex] such that [tex]\(y^3 = x\)[/tex]. To check if 72 is the cube root of 216, we would have to verify if:
[tex]\[ 72^3 = 216 \][/tex]
Clearly, [tex]\(72^3\)[/tex] yields a number much larger than 216. Thus, Hadley's method and result of 72 are incorrect.
### Florence's Method
Florence claims the cube root of 216 is 648 because:
[tex]\[ 216 \cdot 3 = 648 \][/tex]
Multiplying 216 by 3 does not provide the cube root. For Florence's answer to be correct, we would have:
[tex]\[ 648^3 = 216 \][/tex]
This statement is false, as [tex]\(648^3\)[/tex] is far greater than 216. Florenceās method and result of 648 are incorrect.
### Robi's Method
Robi claims the cube root of 216 is 6 because:
[tex]\[ 6^3 = 6 \cdot 6 \cdot 6 = 216 \][/tex]
To verify Robiās answer, we calculate:
[tex]\[ 6^3 \][/tex]
[tex]\[ 6 \cdot 6 = 36 \][/tex]
[tex]\[ 36 \cdot 6 = 216 \][/tex]
Robi correctly identified that [tex]\(6^3 = 216\)[/tex], so his approach and result are correct.
### Conclusion
Among the three students, Robi found the correct cube root of 216, which is 6. The numerical evaluation confirms that:
[tex]\[ \sqrt[3]{216} = 5.999999999999999 \approx 6 \][/tex]
Therefore, Robi's cube root of 6 is correct, and he is the student who accurately found the cube root of 216.
### Hadley's Method
Hadley claims the cube root of 216 is 72 because:
[tex]\[ 216 \div 3 = 72 \][/tex]
However, dividing 216 by 3 does not give us the cube root of 216. The cube root of a number [tex]\(x\)[/tex] is a number [tex]\(y\)[/tex] such that [tex]\(y^3 = x\)[/tex]. To check if 72 is the cube root of 216, we would have to verify if:
[tex]\[ 72^3 = 216 \][/tex]
Clearly, [tex]\(72^3\)[/tex] yields a number much larger than 216. Thus, Hadley's method and result of 72 are incorrect.
### Florence's Method
Florence claims the cube root of 216 is 648 because:
[tex]\[ 216 \cdot 3 = 648 \][/tex]
Multiplying 216 by 3 does not provide the cube root. For Florence's answer to be correct, we would have:
[tex]\[ 648^3 = 216 \][/tex]
This statement is false, as [tex]\(648^3\)[/tex] is far greater than 216. Florenceās method and result of 648 are incorrect.
### Robi's Method
Robi claims the cube root of 216 is 6 because:
[tex]\[ 6^3 = 6 \cdot 6 \cdot 6 = 216 \][/tex]
To verify Robiās answer, we calculate:
[tex]\[ 6^3 \][/tex]
[tex]\[ 6 \cdot 6 = 36 \][/tex]
[tex]\[ 36 \cdot 6 = 216 \][/tex]
Robi correctly identified that [tex]\(6^3 = 216\)[/tex], so his approach and result are correct.
### Conclusion
Among the three students, Robi found the correct cube root of 216, which is 6. The numerical evaluation confirms that:
[tex]\[ \sqrt[3]{216} = 5.999999999999999 \approx 6 \][/tex]
Therefore, Robi's cube root of 6 is correct, and he is the student who accurately found the cube root of 216.
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We appreciate your time. Please come back anytime for the latest information and answers to your questions. Your questions are important to us at Westonci.ca. Visit again for expert answers and reliable information.