Welcome to Westonci.ca, the ultimate question and answer platform. Get expert answers to your questions quickly and accurately. Get quick and reliable solutions to your questions from a community of experienced professionals on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To determine the correct equation that represents the amount of water in the pond after a certain number of minutes, let's break down the problem step-by-step.
1. Initial Condition:
- The pond initially has 10 gallons of water.
2. Filling Rate:
- The rate at which the pond is being filled is 8 gallons per minute.
3. Formulating the Equation:
- Let [tex]$x$[/tex] be the number of minutes.
- After [tex]$x$[/tex] minutes, the amount of water added to the pond can be calculated as [tex]\(8x\)[/tex] gallons (since water is being added at a rate of 8 gallons per minute).
- Therefore, the total amount of water in the pond after [tex]$x$[/tex] minutes will be the initial amount plus the amount added.
So, we can write the total amount of water [tex]\(y\)[/tex] as:
[tex]\[ y = 10 + 8x \][/tex]
Simplifying this, we get:
[tex]\[ y = 8x + 10 \][/tex]
This equation represents the total amount of water in the pond after [tex]$x$[/tex] minutes.
Therefore, the correct equation from the given options is:
- [tex]$y = 8x + 10$[/tex]
The other options are:
- [tex]$y = 8x$[/tex] (Incorrect because it does not account for the initial 10 gallons)
- [tex]$y = 10x + 8$[/tex] (Incorrect because the rate and initial amount are incorrectly placed)
- [tex]$y = 8x - 10$[/tex] (Incorrect because it subtracts the initial amount rather than adding it)
Thus, the correct equation is:
- [tex]$y = 8x + 10$[/tex]
1. Initial Condition:
- The pond initially has 10 gallons of water.
2. Filling Rate:
- The rate at which the pond is being filled is 8 gallons per minute.
3. Formulating the Equation:
- Let [tex]$x$[/tex] be the number of minutes.
- After [tex]$x$[/tex] minutes, the amount of water added to the pond can be calculated as [tex]\(8x\)[/tex] gallons (since water is being added at a rate of 8 gallons per minute).
- Therefore, the total amount of water in the pond after [tex]$x$[/tex] minutes will be the initial amount plus the amount added.
So, we can write the total amount of water [tex]\(y\)[/tex] as:
[tex]\[ y = 10 + 8x \][/tex]
Simplifying this, we get:
[tex]\[ y = 8x + 10 \][/tex]
This equation represents the total amount of water in the pond after [tex]$x$[/tex] minutes.
Therefore, the correct equation from the given options is:
- [tex]$y = 8x + 10$[/tex]
The other options are:
- [tex]$y = 8x$[/tex] (Incorrect because it does not account for the initial 10 gallons)
- [tex]$y = 10x + 8$[/tex] (Incorrect because the rate and initial amount are incorrectly placed)
- [tex]$y = 8x - 10$[/tex] (Incorrect because it subtracts the initial amount rather than adding it)
Thus, the correct equation is:
- [tex]$y = 8x + 10$[/tex]
Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. We hope this was helpful. Please come back whenever you need more information or answers to your queries. We're glad you chose Westonci.ca. Revisit us for updated answers from our knowledgeable team.