Find the best solutions to your questions at Westonci.ca, the premier Q&A platform with a community of knowledgeable experts. Connect with a community of experts ready to provide precise solutions to your questions on our user-friendly Q&A platform. Connect with a community of professionals ready to provide precise solutions to your questions quickly and accurately.
Sagot :
To determine which functions have horizontal asymptotes, we'll analyze the limits of the given functions as [tex]\( x \)[/tex] approaches infinity.
1. Function [tex]\( f(x)=\frac{x^3-2 x+3}{x^2-5} \)[/tex]
To find the horizontal asymptote, consider the degrees of the numerator and the denominator:
[tex]\[ \lim_{x \to \infty} \frac{x^3-2x+3}{x^2-5}. \][/tex]
Here, the degree of the numerator is 3 and the degree of the denominator is 2. Since the degree of the numerator is higher, this function does not have a horizontal asymptote.
2. Function [tex]\( v(x)=\frac{x^2-1}{x^2-5} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5}. \][/tex]
Since the degrees of the numerator and the denominator are the same, the horizontal asymptote is given by the ratio of the leading coefficients:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5} = \frac{1}{1} = 1. \][/tex]
Thus, this function [tex]\( v(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 1 \)[/tex].
3. Function [tex]\( g(x)=\frac{1-x}{x^2+2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2}. \][/tex]
Here, the degree of the numerator is 1 and the degree of the denominator is 2. Since the degree of the denominator is higher, this function has a horizontal asymptote at [tex]\( y = 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2} = 0. \][/tex]
Thus, [tex]\( g(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
4. Function [tex]\( w(x)=\frac{x+3 x^4}{x^2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x+3x^4}{x^2}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x(1 + 3x^3)}{x^2} = \lim_{x \to \infty} \frac{1 + 3x^3}{x} = \lim_{x \to \infty} (3x^2) \rightarrow \infty \text{ or } -\infty. \][/tex]
Since this limit grows without bound, [tex]\( w(x) \)[/tex] does not have a horizontal asymptote.
5. Function [tex]\( h(x)=\frac{x^3}{x^2-5 x^4} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2-5x^4}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2(1-5x^2)} = \lim_{x \to \infty} \frac{x}{1-5x^2} = \lim_{x \to \infty} -\frac{1}{5x} \rightarrow 0. \][/tex]
Thus, [tex]\( h(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
Functions that have horizontal asymptotes are:
[tex]\[ v(x) = \frac{x^2-1}{x^2-5}, \quad g(x) = \frac{1-x}{x^2+2}, \quad \text{and} \quad h(x) = \frac{x^3}{x^2-5x^4}. \][/tex]
1. Function [tex]\( f(x)=\frac{x^3-2 x+3}{x^2-5} \)[/tex]
To find the horizontal asymptote, consider the degrees of the numerator and the denominator:
[tex]\[ \lim_{x \to \infty} \frac{x^3-2x+3}{x^2-5}. \][/tex]
Here, the degree of the numerator is 3 and the degree of the denominator is 2. Since the degree of the numerator is higher, this function does not have a horizontal asymptote.
2. Function [tex]\( v(x)=\frac{x^2-1}{x^2-5} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5}. \][/tex]
Since the degrees of the numerator and the denominator are the same, the horizontal asymptote is given by the ratio of the leading coefficients:
[tex]\[ \lim_{x \to \infty} \frac{x^2-1}{x^2-5} = \frac{1}{1} = 1. \][/tex]
Thus, this function [tex]\( v(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 1 \)[/tex].
3. Function [tex]\( g(x)=\frac{1-x}{x^2+2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2}. \][/tex]
Here, the degree of the numerator is 1 and the degree of the denominator is 2. Since the degree of the denominator is higher, this function has a horizontal asymptote at [tex]\( y = 0 \)[/tex]:
[tex]\[ \lim_{x \to \infty} \frac{1-x}{x^2+2} = 0. \][/tex]
Thus, [tex]\( g(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
4. Function [tex]\( w(x)=\frac{x+3 x^4}{x^2} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x+3x^4}{x^2}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x(1 + 3x^3)}{x^2} = \lim_{x \to \infty} \frac{1 + 3x^3}{x} = \lim_{x \to \infty} (3x^2) \rightarrow \infty \text{ or } -\infty. \][/tex]
Since this limit grows without bound, [tex]\( w(x) \)[/tex] does not have a horizontal asymptote.
5. Function [tex]\( h(x)=\frac{x^3}{x^2-5 x^4} \)[/tex]
For the limit as [tex]\( x \)[/tex] approaches infinity:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2-5x^4}. \][/tex]
Simplifying inside the limit:
[tex]\[ \lim_{x \to \infty} \frac{x^3}{x^2(1-5x^2)} = \lim_{x \to \infty} \frac{x}{1-5x^2} = \lim_{x \to \infty} -\frac{1}{5x} \rightarrow 0. \][/tex]
Thus, [tex]\( h(x) \)[/tex] has a horizontal asymptote at [tex]\( y = 0 \)[/tex].
Functions that have horizontal asymptotes are:
[tex]\[ v(x) = \frac{x^2-1}{x^2-5}, \quad g(x) = \frac{1-x}{x^2+2}, \quad \text{and} \quad h(x) = \frac{x^3}{x^2-5x^4}. \][/tex]
We hope our answers were helpful. Return anytime for more information and answers to any other questions you may have. We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Stay curious and keep coming back to Westonci.ca for answers to all your burning questions.