Welcome to Westonci.ca, where curiosity meets expertise. Ask any question and receive fast, accurate answers from our knowledgeable community. Get quick and reliable solutions to your questions from knowledgeable professionals on our comprehensive Q&A platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To rewrite the given expression [tex]\(\left(4^{\frac{2}{5}}\right)^{\frac{1}{4}}\)[/tex] with a rational exponent as a radical expression, we can follow these steps:
1. Understand the initial expression:
The given expression is:
[tex]\[ \left(4^{\frac{2}{5}}\right)^{\frac{1}{4}} \][/tex]
2. Apply the power of a power rule:
According to the rules of exponents, [tex]\((a^{m})^{n} = a^{m \cdot n}\)[/tex]. So, we apply this rule here:
[tex]\[ \left(4^{\frac{2}{5}}\right)^{\frac{1}{4}} = 4^{\left(\frac{2}{5} \cdot \frac{1}{4}\right)} \][/tex]
3. Simplify the exponent:
Simplify the product of the exponents [tex]\(\frac{2}{5} \cdot \frac{1}{4}\)[/tex]:
[tex]\[ \frac{2}{5} \cdot \frac{1}{4} = \frac{2 \cdot 1}{5 \cdot 4} = \frac{2}{20} = \frac{1}{10} \][/tex]
4. Rewrite the expression with the simplified exponent:
So, the expression becomes:
[tex]\[ 4^{\frac{1}{10}} \][/tex]
5. Convert to a radical expression:
A rational exponent [tex]\(\frac{1}{n}\)[/tex] corresponds to the [tex]\(n\)[/tex]-th root. Therefore, [tex]\(\frac{1}{10}\)[/tex] corresponds to the 10th root:
[tex]\[ 4^{\frac{1}{10}} = \sqrt[10]{4} \][/tex]
In conclusion, the expression [tex]\(\left(4^{\frac{2}{5}}\right)^{\frac{1}{4}}\)[/tex] can be rewritten as:
[tex]\[ \sqrt[10]{4} \][/tex]
So, the final answer is the 10th root of 4.
1. Understand the initial expression:
The given expression is:
[tex]\[ \left(4^{\frac{2}{5}}\right)^{\frac{1}{4}} \][/tex]
2. Apply the power of a power rule:
According to the rules of exponents, [tex]\((a^{m})^{n} = a^{m \cdot n}\)[/tex]. So, we apply this rule here:
[tex]\[ \left(4^{\frac{2}{5}}\right)^{\frac{1}{4}} = 4^{\left(\frac{2}{5} \cdot \frac{1}{4}\right)} \][/tex]
3. Simplify the exponent:
Simplify the product of the exponents [tex]\(\frac{2}{5} \cdot \frac{1}{4}\)[/tex]:
[tex]\[ \frac{2}{5} \cdot \frac{1}{4} = \frac{2 \cdot 1}{5 \cdot 4} = \frac{2}{20} = \frac{1}{10} \][/tex]
4. Rewrite the expression with the simplified exponent:
So, the expression becomes:
[tex]\[ 4^{\frac{1}{10}} \][/tex]
5. Convert to a radical expression:
A rational exponent [tex]\(\frac{1}{n}\)[/tex] corresponds to the [tex]\(n\)[/tex]-th root. Therefore, [tex]\(\frac{1}{10}\)[/tex] corresponds to the 10th root:
[tex]\[ 4^{\frac{1}{10}} = \sqrt[10]{4} \][/tex]
In conclusion, the expression [tex]\(\left(4^{\frac{2}{5}}\right)^{\frac{1}{4}}\)[/tex] can be rewritten as:
[tex]\[ \sqrt[10]{4} \][/tex]
So, the final answer is the 10th root of 4.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.