Westonci.ca is the best place to get answers to your questions, provided by a community of experienced and knowledgeable experts. Explore comprehensive solutions to your questions from a wide range of professionals on our user-friendly platform. Connect with a community of professionals ready to help you find accurate solutions to your questions quickly and efficiently.
Sagot :
To graph the function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex], we will follow a step-by-step process to identify the key characteristics and plot important points on the coordinate plane.
### 1. Function Analysis
#### Domain:
The function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] involves a square root, which means the expression inside the square root, [tex]\( x-1 \)[/tex], must be non-negative. Therefore:
[tex]\[ x - 1 \geq 0 \][/tex]
[tex]\[ x \geq 1 \][/tex]
So, the domain of the function is [tex]\( x \in [1, \infty) \)[/tex].
#### Range:
For [tex]\( x \geq 1 \)[/tex], the expression [tex]\( \sqrt{x-1} \)[/tex] can take any non-negative value from 0 to [tex]\(\infty\)[/tex]. When [tex]\( \sqrt{x-1} \)[/tex] = 0, [tex]\( f(x) = 0 \)[/tex]. As [tex]\( x \to \infty \)[/tex], [tex]\( \sqrt{x-1} \to \infty \)[/tex], making [tex]\( f(x) = 3 \sqrt{x-1} \to \infty \)[/tex]. Hence, the range of [tex]\( f(x) \)[/tex] is [tex]\( [0, \infty) \)[/tex].
### 2. Important Points to Plot
Let's determine a few key points that lie on the function [tex]\( f(x) \)[/tex]:
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3 \sqrt{1 - 1} = 3 \times 0 = 0 \][/tex]
Point: [tex]\( (1, 0) \)[/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3 \sqrt{2 - 1} = 3 \times 1 = 3 \][/tex]
Point: [tex]\( (2, 3) \)[/tex]
- When [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 3 \sqrt{4 - 1} = 3 \sqrt{3} \approx 3 \times 1.732 \approx 5.196 \][/tex]
Point: [tex]\( (4, 5.196) \)[/tex]
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = 3 \sqrt{10 - 1} = 3 \sqrt{9} = 3 \times 3 = 9 \][/tex]
Point: [tex]\( (10, 9) \)[/tex]
### 3. Drawing the Graph
Using these points, we can sketch the graph of the function. Start by plotting the following points on the coordinate plane:
- [tex]\( (1, 0) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (4, 5.196) \)[/tex]
- [tex]\( (10, 9) \)[/tex]
These points are taken from the generated data:
[tex]\[ \begin{align*} (1.0, 0.0) & , (2.0, 3.0) \\ (4.0, 5.196) & , (10.0, 9.0) \end{align*} \][/tex]
### 4. Graph Shape Description
- The graph starts at [tex]\( (1, 0) \)[/tex] since [tex]\( f(1) = 0 \)[/tex].
- As [tex]\( x \)[/tex] increases, the function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] grows rapidly but in a smooth, continuous curve.
- There is a gradual steepening as [tex]\( x \)[/tex] increases because the square root function increases more slowly than a linear function.

### Summary
The graph of [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] is a curve that begins at the point [tex]\( (1, 0) \)[/tex] and rises gradually. It represents a square root function scaled by a factor of 3, starting at [tex]\( x = 1 \)[/tex] and increasing continuously. The plotted points provide a guide to draw the function accurately.
### 1. Function Analysis
#### Domain:
The function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] involves a square root, which means the expression inside the square root, [tex]\( x-1 \)[/tex], must be non-negative. Therefore:
[tex]\[ x - 1 \geq 0 \][/tex]
[tex]\[ x \geq 1 \][/tex]
So, the domain of the function is [tex]\( x \in [1, \infty) \)[/tex].
#### Range:
For [tex]\( x \geq 1 \)[/tex], the expression [tex]\( \sqrt{x-1} \)[/tex] can take any non-negative value from 0 to [tex]\(\infty\)[/tex]. When [tex]\( \sqrt{x-1} \)[/tex] = 0, [tex]\( f(x) = 0 \)[/tex]. As [tex]\( x \to \infty \)[/tex], [tex]\( \sqrt{x-1} \to \infty \)[/tex], making [tex]\( f(x) = 3 \sqrt{x-1} \to \infty \)[/tex]. Hence, the range of [tex]\( f(x) \)[/tex] is [tex]\( [0, \infty) \)[/tex].
### 2. Important Points to Plot
Let's determine a few key points that lie on the function [tex]\( f(x) \)[/tex]:
- When [tex]\( x = 1 \)[/tex]:
[tex]\[ f(1) = 3 \sqrt{1 - 1} = 3 \times 0 = 0 \][/tex]
Point: [tex]\( (1, 0) \)[/tex]
- When [tex]\( x = 2 \)[/tex]:
[tex]\[ f(2) = 3 \sqrt{2 - 1} = 3 \times 1 = 3 \][/tex]
Point: [tex]\( (2, 3) \)[/tex]
- When [tex]\( x = 4 \)[/tex]:
[tex]\[ f(4) = 3 \sqrt{4 - 1} = 3 \sqrt{3} \approx 3 \times 1.732 \approx 5.196 \][/tex]
Point: [tex]\( (4, 5.196) \)[/tex]
- When [tex]\( x = 10 \)[/tex]:
[tex]\[ f(10) = 3 \sqrt{10 - 1} = 3 \sqrt{9} = 3 \times 3 = 9 \][/tex]
Point: [tex]\( (10, 9) \)[/tex]
### 3. Drawing the Graph
Using these points, we can sketch the graph of the function. Start by plotting the following points on the coordinate plane:
- [tex]\( (1, 0) \)[/tex]
- [tex]\( (2, 3) \)[/tex]
- [tex]\( (4, 5.196) \)[/tex]
- [tex]\( (10, 9) \)[/tex]
These points are taken from the generated data:
[tex]\[ \begin{align*} (1.0, 0.0) & , (2.0, 3.0) \\ (4.0, 5.196) & , (10.0, 9.0) \end{align*} \][/tex]
### 4. Graph Shape Description
- The graph starts at [tex]\( (1, 0) \)[/tex] since [tex]\( f(1) = 0 \)[/tex].
- As [tex]\( x \)[/tex] increases, the function [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] grows rapidly but in a smooth, continuous curve.
- There is a gradual steepening as [tex]\( x \)[/tex] increases because the square root function increases more slowly than a linear function.

### Summary
The graph of [tex]\( f(x) = 3 \sqrt{x-1} \)[/tex] is a curve that begins at the point [tex]\( (1, 0) \)[/tex] and rises gradually. It represents a square root function scaled by a factor of 3, starting at [tex]\( x = 1 \)[/tex] and increasing continuously. The plotted points provide a guide to draw the function accurately.
We hope you found this helpful. Feel free to come back anytime for more accurate answers and updated information. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.