Explore Westonci.ca, the premier Q&A site that helps you find precise answers to your questions, no matter the topic. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform. Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform.
Sagot :
Let's solve the given expressions step-by-step.
### (a) \(\sin \left(\sin ^{-1} \frac{7}{9}\right)\)
The expression \(\sin(\sin^{-1}(x))\) is essentially the sine function composed with its inverse. The inverse sine function, \(\sin^{-1}(x)\), returns an angle \(\theta\) such that \(\sin(\theta) = x\) and \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\).
Given the expression:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right)\right) \][/tex]
we are essentially looking for the sine of the angle whose sine is \(\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right) \right) = \frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{\frac{7}{9}} \][/tex]
### (b) \(\cos \left[\cos ^{-1}\left(-\frac{7}{9}\right)\right]\)
Similarly, the expression \(\cos(\cos^{-1}(x))\) is the cosine function composed with its inverse. The inverse cosine function, \(\cos^{-1}(x)\), returns an angle \(\theta\) such that \(\cos(\theta) = x\) and \(0 \leq \theta \leq \pi\).
Given the expression:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) \][/tex]
we are looking for the cosine of the angle whose cosine is \(-\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) = -\frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{-\frac{7}{9}} \][/tex]
### (c) \(\tan \left[\tan ^{-1}(-10)\right]\)
The expression \(\tan(\tan^{-1}(x))\) is the tangent function composed with its inverse. The inverse tangent function, \(\tan^{-1}(x)\), returns an angle \(\theta\) such that \(\tan(\theta) = x\) and \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\).
Given the expression:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) \][/tex]
we are looking for the tangent of the angle whose tangent is \(-10\). By the definition of inverse functions:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) = -10 \][/tex]
Thus, the value is:
[tex]\[ \boxed{-10} \][/tex]
### Summary
The exact values of the given expressions are:
(a) \(\boxed{\frac{7}{9}}\)
(b) \(\boxed{-\frac{7}{9}}\)
(c) [tex]\(\boxed{-10}\)[/tex]
### (a) \(\sin \left(\sin ^{-1} \frac{7}{9}\right)\)
The expression \(\sin(\sin^{-1}(x))\) is essentially the sine function composed with its inverse. The inverse sine function, \(\sin^{-1}(x)\), returns an angle \(\theta\) such that \(\sin(\theta) = x\) and \(-\frac{\pi}{2} \leq \theta \leq \frac{\pi}{2}\).
Given the expression:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right)\right) \][/tex]
we are essentially looking for the sine of the angle whose sine is \(\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \sin \left(\sin^{-1} \left(\frac{7}{9}\right) \right) = \frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{\frac{7}{9}} \][/tex]
### (b) \(\cos \left[\cos ^{-1}\left(-\frac{7}{9}\right)\right]\)
Similarly, the expression \(\cos(\cos^{-1}(x))\) is the cosine function composed with its inverse. The inverse cosine function, \(\cos^{-1}(x)\), returns an angle \(\theta\) such that \(\cos(\theta) = x\) and \(0 \leq \theta \leq \pi\).
Given the expression:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) \][/tex]
we are looking for the cosine of the angle whose cosine is \(-\frac{7}{9}\). By the definition of inverse functions:
[tex]\[ \cos \left(\cos^{-1} \left(-\frac{7}{9}\right)\right) = -\frac{7}{9} \][/tex]
Thus, the value is:
[tex]\[ \boxed{-\frac{7}{9}} \][/tex]
### (c) \(\tan \left[\tan ^{-1}(-10)\right]\)
The expression \(\tan(\tan^{-1}(x))\) is the tangent function composed with its inverse. The inverse tangent function, \(\tan^{-1}(x)\), returns an angle \(\theta\) such that \(\tan(\theta) = x\) and \(-\frac{\pi}{2} < \theta < \frac{\pi}{2}\).
Given the expression:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) \][/tex]
we are looking for the tangent of the angle whose tangent is \(-10\). By the definition of inverse functions:
[tex]\[ \tan \left(\tan^{-1}(-10)\right) = -10 \][/tex]
Thus, the value is:
[tex]\[ \boxed{-10} \][/tex]
### Summary
The exact values of the given expressions are:
(a) \(\boxed{\frac{7}{9}}\)
(b) \(\boxed{-\frac{7}{9}}\)
(c) [tex]\(\boxed{-10}\)[/tex]
Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Thanks for using our platform. We aim to provide accurate and up-to-date answers to all your queries. Come back soon. Discover more at Westonci.ca. Return for the latest expert answers and updates on various topics.