Looking for trustworthy answers? Westonci.ca is the ultimate Q&A platform where experts share their knowledge on various topics. Join our platform to connect with experts ready to provide detailed answers to your questions in various areas. Join our platform to connect with experts ready to provide precise answers to your questions in different areas.
Sagot :
To graph the function [tex]\( h(x) = -\sqrt[3]{x+8} \)[/tex] by transforming the parent function, we need to follow these steps:
### Identify the Parent Function
The parent function here is [tex]\( f(x) = \sqrt[3]{x} \)[/tex].
### Examine the Transformations
1. Reflection: The negative sign in front of the cube root function indicates that the graph of the parent function will be reflected across the [tex]\( x \)[/tex]-axis. This means that if a point [tex]\((a, b)\)[/tex] is on the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex], the point [tex]\((a, -b)\)[/tex] will be on the graph of [tex]\( h(x)\)[/tex].
2. Horizontal Translation: The term [tex]\((x + 8)\)[/tex] inside the cube root function indicates a horizontal translation. Specifically, [tex]\((x + 8)\)[/tex] implies a shift to the left by 8 units. This means that if a point [tex]\((a, b)\)[/tex] is on the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex], then the point [tex]\((a - 8, b)\)[/tex] will be on the graph of [tex]\( \sqrt[3]{x + 8} \)[/tex].
### Combining Transformations
First, we reflect the graph of the parent function over the [tex]\( x \)[/tex]-axis. After reflection, we then translate the graph 8 units to the left.
### Conclusion
Therefore, the correct description of how to graph [tex]\( h(x) = -\sqrt[3]{x+8} \)[/tex] by transforming the parent function [tex]\( f(x) = \sqrt[3]{x} \)[/tex] is:
Reflect the parent function over the [tex]\( x \)[/tex]-axis, and translate it 8 units to the left.
The answer is:
Reflect the parent function over the [tex]\( x \)[/tex]-axis, and translate it 8 units to the left.
### Identify the Parent Function
The parent function here is [tex]\( f(x) = \sqrt[3]{x} \)[/tex].
### Examine the Transformations
1. Reflection: The negative sign in front of the cube root function indicates that the graph of the parent function will be reflected across the [tex]\( x \)[/tex]-axis. This means that if a point [tex]\((a, b)\)[/tex] is on the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex], the point [tex]\((a, -b)\)[/tex] will be on the graph of [tex]\( h(x)\)[/tex].
2. Horizontal Translation: The term [tex]\((x + 8)\)[/tex] inside the cube root function indicates a horizontal translation. Specifically, [tex]\((x + 8)\)[/tex] implies a shift to the left by 8 units. This means that if a point [tex]\((a, b)\)[/tex] is on the graph of [tex]\( f(x) = \sqrt[3]{x} \)[/tex], then the point [tex]\((a - 8, b)\)[/tex] will be on the graph of [tex]\( \sqrt[3]{x + 8} \)[/tex].
### Combining Transformations
First, we reflect the graph of the parent function over the [tex]\( x \)[/tex]-axis. After reflection, we then translate the graph 8 units to the left.
### Conclusion
Therefore, the correct description of how to graph [tex]\( h(x) = -\sqrt[3]{x+8} \)[/tex] by transforming the parent function [tex]\( f(x) = \sqrt[3]{x} \)[/tex] is:
Reflect the parent function over the [tex]\( x \)[/tex]-axis, and translate it 8 units to the left.
The answer is:
Reflect the parent function over the [tex]\( x \)[/tex]-axis, and translate it 8 units to the left.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.