Discover the best answers at Westonci.ca, where experts share their insights and knowledge with you. Join our platform to connect with experts ready to provide precise answers to your questions in different areas. Experience the convenience of finding accurate answers to your questions from knowledgeable experts on our platform.
Sagot :
Sure, let's break down the problem step-by-step to find the correct equation that relates the total amount of gasoline in the tank [tex]\( y \)[/tex] to the number of gallons that Jayne added [tex]\( x \)[/tex].
1. Understand what we know:
- Jayne already had 4 gallons of gas in the tank.
- She then adds [tex]\( x \)[/tex] gallons of gas to the tank.
2. Determine the relationship between the total gasoline in the tank and the additional gasoline added:
- The total amount of gasoline [tex]\( y \)[/tex] is the sum of the gasoline already in the tank and the gasoline she added.
- Since the tank already has 4 gallons, we can say [tex]\( y = 4 \)[/tex] (initial gas) [tex]\( + x \)[/tex] (gas added).
3. Translate this relationship into an equation:
- Total gasoline [tex]\( y = 4 + x \)[/tex].
4. Evaluate the given choices:
- [tex]\( y = 4 + x \)[/tex]: This matches our equation perfectly.
- [tex]\( y = x - 4 \)[/tex]: This would mean subtracting 4 gallons from what she added, which doesn't match our situation.
- [tex]\( y = 4 \cdot x \)[/tex]: This suggests the total gasoline is the product of 4 gallons and the added gallons, which is incorrect.
- [tex]\( y = x \div 4 \)[/tex]: This would imply dividing the added gasoline by 4, which is also incorrect.
So, the correct equation that represents the relationship between the total amount of gasoline in the tank [tex]\( y \)[/tex] and the number of gallons [tex]\( x \)[/tex] that Jayne puts in the tank is:
[tex]\[ y = 4 + x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = 4 + x} \][/tex]
1. Understand what we know:
- Jayne already had 4 gallons of gas in the tank.
- She then adds [tex]\( x \)[/tex] gallons of gas to the tank.
2. Determine the relationship between the total gasoline in the tank and the additional gasoline added:
- The total amount of gasoline [tex]\( y \)[/tex] is the sum of the gasoline already in the tank and the gasoline she added.
- Since the tank already has 4 gallons, we can say [tex]\( y = 4 \)[/tex] (initial gas) [tex]\( + x \)[/tex] (gas added).
3. Translate this relationship into an equation:
- Total gasoline [tex]\( y = 4 + x \)[/tex].
4. Evaluate the given choices:
- [tex]\( y = 4 + x \)[/tex]: This matches our equation perfectly.
- [tex]\( y = x - 4 \)[/tex]: This would mean subtracting 4 gallons from what she added, which doesn't match our situation.
- [tex]\( y = 4 \cdot x \)[/tex]: This suggests the total gasoline is the product of 4 gallons and the added gallons, which is incorrect.
- [tex]\( y = x \div 4 \)[/tex]: This would imply dividing the added gasoline by 4, which is also incorrect.
So, the correct equation that represents the relationship between the total amount of gasoline in the tank [tex]\( y \)[/tex] and the number of gallons [tex]\( x \)[/tex] that Jayne puts in the tank is:
[tex]\[ y = 4 + x \][/tex]
Therefore, the correct answer is:
[tex]\[ \boxed{y = 4 + x} \][/tex]
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.