At Westonci.ca, we connect you with experts who provide detailed answers to your most pressing questions. Start exploring now! Discover detailed answers to your questions from a wide network of experts on our comprehensive Q&A platform. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
Sure! Let's solve the integral [tex]\(\int \frac{(x-3)}{(x+3)} \, dx\)[/tex] step by step.
Step 1: Begin with the original integral:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx \][/tex]
Step 2: Simplify the expression inside the integral by dividing the numerator by the denominator. We can decompose [tex]\(\frac{(x-3)}{(x+3)}\)[/tex] as follows:
[tex]\[ \frac{x-3}{x+3} = \frac{x+3-6}{x+3} = \frac{x+3}{x+3} - \frac{6}{x+3} \][/tex]
Step 3: Split the integral into two simpler integrals:
[tex]\[ \int \left( \frac{x+3}{x+3} - \frac{6}{x+3} \right) \, dx = \int 1 \, dx - \int \frac{6}{x+3} \, dx \][/tex]
Step 4: Solve the first integral:
[tex]\[ \int 1 \, dx = x \][/tex]
Step 5: Solve the second integral. Let [tex]\(u = x + 3\)[/tex], then [tex]\(du = dx\)[/tex]:
[tex]\[ \int \frac{6}{x+3} \, dx = 6 \int \frac{1}{u} \, du = 6 \ln|u| = 6 \ln|x+3| \][/tex]
Step 6: Put everything together:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx = x - 6 \ln|x+3| + C \][/tex]
Therefore, the integral [tex]\(\int \frac{(x-3)}{(x+3)} \, dx\)[/tex] evaluates to:
[tex]\[ x - 6 \ln|x+3| + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
Step 1: Begin with the original integral:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx \][/tex]
Step 2: Simplify the expression inside the integral by dividing the numerator by the denominator. We can decompose [tex]\(\frac{(x-3)}{(x+3)}\)[/tex] as follows:
[tex]\[ \frac{x-3}{x+3} = \frac{x+3-6}{x+3} = \frac{x+3}{x+3} - \frac{6}{x+3} \][/tex]
Step 3: Split the integral into two simpler integrals:
[tex]\[ \int \left( \frac{x+3}{x+3} - \frac{6}{x+3} \right) \, dx = \int 1 \, dx - \int \frac{6}{x+3} \, dx \][/tex]
Step 4: Solve the first integral:
[tex]\[ \int 1 \, dx = x \][/tex]
Step 5: Solve the second integral. Let [tex]\(u = x + 3\)[/tex], then [tex]\(du = dx\)[/tex]:
[tex]\[ \int \frac{6}{x+3} \, dx = 6 \int \frac{1}{u} \, du = 6 \ln|u| = 6 \ln|x+3| \][/tex]
Step 6: Put everything together:
[tex]\[ \int \frac{(x-3)}{(x+3)} \, dx = x - 6 \ln|x+3| + C \][/tex]
Therefore, the integral [tex]\(\int \frac{(x-3)}{(x+3)} \, dx\)[/tex] evaluates to:
[tex]\[ x - 6 \ln|x+3| + C \][/tex]
Where [tex]\(C\)[/tex] is the constant of integration.
Thanks for using our service. We're always here to provide accurate and up-to-date answers to all your queries. Thanks for stopping by. We strive to provide the best answers for all your questions. See you again soon. We're dedicated to helping you find the answers you need at Westonci.ca. Don't hesitate to return for more.