Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the convenience of getting accurate answers to your questions from a dedicated community of professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine whether a point belongs to the solution region of the given system of inequalities, we need to verify that it satisfies both inequalities:
[tex]\[ \begin{array}{l} y > 1.5^x + 4 \\ y < \frac{2}{3}x + 6 \end{array} \][/tex]
Let's choose a point [tex]\((x, y)\)[/tex] and check whether it satisfies both inequalities.
Let's test the point [tex]\((2, 6)\)[/tex]:
Step 1: Check the first inequality [tex]\( y > 1.5^x + 4 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y > 1.5^2 + 4 \][/tex]
Simplifying the right-hand side:
[tex]\[ y > 1.5 \times 1.5 + 4 \][/tex]
[tex]\[ y > 2.25 + 4 \][/tex]
[tex]\[ y > 6.25 \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 > 6.25 \][/tex]
This inequality is False.
Step 2: Check the second inequality [tex]\( y < \frac{2}{3}x + 6 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y < \frac{2}{3} \times 2 + 6 \][/tex]
Simplifying the right-hand side:
[tex]\[ y < \frac{4}{3} + 6 \][/tex]
[tex]\[ y < \frac{4}{3} + \frac{18}{3} \][/tex]
[tex]\[ y < \frac{22}{3} \][/tex]
[tex]\[ y < 7.\overline{3} \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 < 7.\overline{3} \][/tex]
This inequality is True.
Conclusion:
For the point [tex]\((2, 6)\)[/tex], we checked both inequalities:
- The first inequality is False.
- The second inequality is True.
Since a point must satisfy both inequalities to belong to the solution region, the point [tex]\((2, 6)\)[/tex] does not satisfy the first inequality.
Thus, the point [tex]\( (2, 6) \)[/tex] does not belong to the solution region of this system of inequalities.
[tex]\[ \begin{array}{l} y > 1.5^x + 4 \\ y < \frac{2}{3}x + 6 \end{array} \][/tex]
Let's choose a point [tex]\((x, y)\)[/tex] and check whether it satisfies both inequalities.
Let's test the point [tex]\((2, 6)\)[/tex]:
Step 1: Check the first inequality [tex]\( y > 1.5^x + 4 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y > 1.5^2 + 4 \][/tex]
Simplifying the right-hand side:
[tex]\[ y > 1.5 \times 1.5 + 4 \][/tex]
[tex]\[ y > 2.25 + 4 \][/tex]
[tex]\[ y > 6.25 \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 > 6.25 \][/tex]
This inequality is False.
Step 2: Check the second inequality [tex]\( y < \frac{2}{3}x + 6 \)[/tex]
For [tex]\( x = 2 \)[/tex]:
[tex]\[ y < \frac{2}{3} \times 2 + 6 \][/tex]
Simplifying the right-hand side:
[tex]\[ y < \frac{4}{3} + 6 \][/tex]
[tex]\[ y < \frac{4}{3} + \frac{18}{3} \][/tex]
[tex]\[ y < \frac{22}{3} \][/tex]
[tex]\[ y < 7.\overline{3} \][/tex]
Substitute [tex]\( y = 6 \)[/tex]:
[tex]\[ 6 < 7.\overline{3} \][/tex]
This inequality is True.
Conclusion:
For the point [tex]\((2, 6)\)[/tex], we checked both inequalities:
- The first inequality is False.
- The second inequality is True.
Since a point must satisfy both inequalities to belong to the solution region, the point [tex]\((2, 6)\)[/tex] does not satisfy the first inequality.
Thus, the point [tex]\( (2, 6) \)[/tex] does not belong to the solution region of this system of inequalities.
We appreciate your time. Please come back anytime for the latest information and answers to your questions. Thank you for visiting. Our goal is to provide the most accurate answers for all your informational needs. Come back soon. Thank you for trusting Westonci.ca. Don't forget to revisit us for more accurate and insightful answers.