At Westonci.ca, we connect you with the answers you need, thanks to our active and informed community. Explore thousands of questions and answers from a knowledgeable community of experts on our user-friendly platform. Get precise and detailed answers to your questions from a knowledgeable community of experts on our Q&A platform.

Solve for [tex][tex]$y$[/tex][/tex].

[tex]\[ y^2 - 9y + 14 = 0 \][/tex]

If there is more than one solution, separate them with commas.
If there is no solution, click on "No solution."

[tex]\[ y = \][/tex]


Sagot :

To solve the quadratic equation [tex]\( y^2 - 9y + 14 = 0 \)[/tex], we can use the quadratic formula, which is given by:

[tex]\[ y = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \][/tex]

In this quadratic equation, [tex]\(a\)[/tex], [tex]\(b\)[/tex], and [tex]\(c\)[/tex] are the coefficients of [tex]\(y^2\)[/tex], [tex]\(y\)[/tex], and the constant term, respectively. Here, [tex]\(a = 1\)[/tex], [tex]\(b = -9\)[/tex], and [tex]\(c = 14\)[/tex].

First, we need to calculate the discriminant, which is [tex]\( b^2 - 4ac \)[/tex].

1. Calculate the discriminant:
[tex]\[ \Delta = (-9)^2 - 4 \cdot 1 \cdot 14 \][/tex]
[tex]\[ \Delta = 81 - 56 \][/tex]
[tex]\[ \Delta = 25 \][/tex]

Since the discriminant is positive, we have two real solutions. Now, we use the quadratic formula to find these solutions.

2. Calculate the solutions:
[tex]\[ y_1 = \frac{-(-9) + \sqrt{25}}{2 \cdot 1} \][/tex]
[tex]\[ y_1 = \frac{9 + 5}{2} \][/tex]
[tex]\[ y_1 = \frac{14}{2} \][/tex]
[tex]\[ y_1 = 7 \][/tex]

[tex]\[ y_2 = \frac{-(-9) - \sqrt{25}}{2 \cdot 1} \][/tex]
[tex]\[ y_2 = \frac{9 - 5}{2} \][/tex]
[tex]\[ y_2 = \frac{4}{2} \][/tex]
[tex]\[ y_2 = 2 \][/tex]

Thus, the solutions to the equation [tex]\( y^2 - 9y + 14 = 0 \)[/tex] are:

[tex]\[ y = 7, 2 \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're dedicated to helping you find the information you need, whenever you need it. Keep exploring Westonci.ca for more insightful answers to your questions. We're here to help.