Explore Westonci.ca, the top Q&A platform where your questions are answered by professionals and enthusiasts alike. Get immediate and reliable answers to your questions from a community of experienced experts on our platform. Get immediate and reliable solutions to your questions from a community of experienced professionals on our platform.
Sagot :
To solve the problem of combining the fractions [tex]\(\frac{6}{x} + \frac{5}{7}\)[/tex] into a single expression, follow these steps:
1. Identify a Common Denominator: The denominators in the given fractions are [tex]\(x\)[/tex] and 7. To combine these fractions, we need a common denominator, which would be the product of the individual denominators. Therefore, the common denominator is [tex]\(7x\)[/tex].
2. Rewrite Each Fraction with the Common Denominator:
- For [tex]\(\frac{6}{x}\)[/tex], multiply both the numerator and denominator by 7 to get [tex]\(\frac{6 \cdot 7}{x \cdot 7} = \frac{42}{7x}\)[/tex].
- For [tex]\(\frac{5}{7}\)[/tex], multiply both the numerator and denominator by [tex]\(x\)[/tex] to get [tex]\(\frac{5 \cdot x}{7 \cdot x} = \frac{5x}{7x}\)[/tex].
3. Combine the Fractions Using the Common Denominator:
Once the fractions are rewritten to share a common denominator, they can be added directly:
[tex]\[ \frac{42}{7x} + \frac{5x}{7x} = \frac{42 + 5x}{7x} \][/tex]
Therefore, the combined fraction [tex]\(\frac{6}{x} + \frac{5}{7}\)[/tex] can be simplified to:
[tex]\(\frac{42 + 5x}{7x}\)[/tex].
Comparing this with the given options:
- F. [tex]\(\frac{11}{7 x}\)[/tex]
- G. [tex]\(\frac{30}{7 x}\)[/tex]
- H. [tex]\(\frac{11}{x+7}\)[/tex]
- J. [tex]\(\frac{35+6 x}{7+x}\)[/tex]
- K. [tex]\(\frac{42+5 x}{7 x}\)[/tex]
The correct answer is:
[tex]\[ \boxed{\frac{42 + 5x}{7x}} \quad \text{(Option K)} \][/tex]
1. Identify a Common Denominator: The denominators in the given fractions are [tex]\(x\)[/tex] and 7. To combine these fractions, we need a common denominator, which would be the product of the individual denominators. Therefore, the common denominator is [tex]\(7x\)[/tex].
2. Rewrite Each Fraction with the Common Denominator:
- For [tex]\(\frac{6}{x}\)[/tex], multiply both the numerator and denominator by 7 to get [tex]\(\frac{6 \cdot 7}{x \cdot 7} = \frac{42}{7x}\)[/tex].
- For [tex]\(\frac{5}{7}\)[/tex], multiply both the numerator and denominator by [tex]\(x\)[/tex] to get [tex]\(\frac{5 \cdot x}{7 \cdot x} = \frac{5x}{7x}\)[/tex].
3. Combine the Fractions Using the Common Denominator:
Once the fractions are rewritten to share a common denominator, they can be added directly:
[tex]\[ \frac{42}{7x} + \frac{5x}{7x} = \frac{42 + 5x}{7x} \][/tex]
Therefore, the combined fraction [tex]\(\frac{6}{x} + \frac{5}{7}\)[/tex] can be simplified to:
[tex]\(\frac{42 + 5x}{7x}\)[/tex].
Comparing this with the given options:
- F. [tex]\(\frac{11}{7 x}\)[/tex]
- G. [tex]\(\frac{30}{7 x}\)[/tex]
- H. [tex]\(\frac{11}{x+7}\)[/tex]
- J. [tex]\(\frac{35+6 x}{7+x}\)[/tex]
- K. [tex]\(\frac{42+5 x}{7 x}\)[/tex]
The correct answer is:
[tex]\[ \boxed{\frac{42 + 5x}{7x}} \quad \text{(Option K)} \][/tex]
We appreciate your visit. Hopefully, the answers you found were beneficial. Don't hesitate to come back for more information. Thank you for your visit. We're committed to providing you with the best information available. Return anytime for more. Westonci.ca is here to provide the answers you seek. Return often for more expert solutions.