Westonci.ca connects you with experts who provide insightful answers to your questions. Join us today and start learning! Join our Q&A platform to get precise answers from experts in diverse fields and enhance your understanding. Experience the ease of finding precise answers to your questions from a knowledgeable community of experts.
Sagot :
To determine whether Type I bulbs are superior to Type II bulbs regarding their length of life, we will perform an independent samples t-test. This test will help us compare the means of the two independent samples to see if there is a statistically significant difference between them.
Here are the steps for this hypothesis test:
1. State the Hypotheses:
- Null Hypothesis [tex]\(H_0\)[/tex]: The mean length of life of Type I bulbs is equal to the mean length of life of Type II bulbs. [tex]\(\mu_1 = \mu_2\)[/tex]
- Alternative Hypothesis [tex]\(H_a\)[/tex]: The mean length of life of Type I bulbs is greater than the mean length of life of Type II bulbs. [tex]\(\mu_1 > \mu_2\)[/tex]
2. Significance Level:
- The significance level [tex]\(\alpha\)[/tex] is 0.05.
3. Calculate the Standard Error (SE):
The standard error of the difference in means is calculated using the formula:
[tex]\[ SE = \sqrt{\left(\frac{sd_1^2}{n_1}\right) + \left(\frac{sd_2^2}{n_2}\right)} \][/tex]
Using the given data:
- [tex]\(sd_1 = 36\)[/tex]
- [tex]\(n_1 = 50\)[/tex]
- [tex]\(sd_2 = 40\)[/tex]
- [tex]\(n_2 = 50\)[/tex]
[tex]\[ SE = \sqrt{\left(\frac{36^2}{50}\right) + \left(\frac{40^2}{50}\right)} = 7.610519036176179 \][/tex]
4. Calculate the Test Statistic:
The test statistic (t) is calculated using the formula:
[tex]\[ t = \frac{(\bar{x}_1 - \bar{x}_2)}{SE} \][/tex]
Where,
- [tex]\(\bar{x}_1 = 1234\)[/tex]
- [tex]\(\bar{x}_2 = 1215\)[/tex]
[tex]\[ t = \frac{(1234 - 1215)}{7.610519036176179} = 2.496544573331274 \][/tex]
5. Determine Degrees of Freedom:
Degrees of freedom (df) for the test are calculated using the formula:
[tex]\[ df = \frac{\left(\frac{sd_1^2}{n_1} + \frac{sd_2^2}{n_2}\right)^2}{\left(\frac{\left(\frac{sd_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{sd_2^2}{n_2}\right)^2}{n_2 - 1}\right)} \][/tex]
[tex]\[ df = \frac{\left(\frac{36^2}{50} + \frac{40^2}{50}\right)^2}{\left(\frac{\left(\frac{36^2}{50}\right)^2}{49} + \frac{\left(\frac{40^2}{50}\right)^2}{49}\right)} = 96.93188817100418 \][/tex]
6. Determine the Critical Value:
For a one-tailed test at [tex]\(\alpha = 0.05\)[/tex] significance level and [tex]\(df = 96.93\)[/tex], the critical value from the t-distribution table is approximately 1.6607.
7. Decision Rule:
Compare the test statistic to the critical value:
- If [tex]\(t > t_{\text{critical}}\)[/tex], we reject the null hypothesis.
Here, [tex]\(t = 2.4965\)[/tex] and [tex]\(t_{\text{critical}} = 1.6607\)[/tex].
Since [tex]\(2.4965 > 1.6607\)[/tex], we reject the null hypothesis.
8. Conclusion:
Since the test statistic is greater than the critical value, we reject the null hypothesis. This means that there is sufficient evidence at the 5% level of significance to conclude that the mean length of life for Type I bulbs is significantly greater than that for Type II bulbs. Therefore, Type I bulbs are superior to Type II bulbs concerning their length of life.
Here are the steps for this hypothesis test:
1. State the Hypotheses:
- Null Hypothesis [tex]\(H_0\)[/tex]: The mean length of life of Type I bulbs is equal to the mean length of life of Type II bulbs. [tex]\(\mu_1 = \mu_2\)[/tex]
- Alternative Hypothesis [tex]\(H_a\)[/tex]: The mean length of life of Type I bulbs is greater than the mean length of life of Type II bulbs. [tex]\(\mu_1 > \mu_2\)[/tex]
2. Significance Level:
- The significance level [tex]\(\alpha\)[/tex] is 0.05.
3. Calculate the Standard Error (SE):
The standard error of the difference in means is calculated using the formula:
[tex]\[ SE = \sqrt{\left(\frac{sd_1^2}{n_1}\right) + \left(\frac{sd_2^2}{n_2}\right)} \][/tex]
Using the given data:
- [tex]\(sd_1 = 36\)[/tex]
- [tex]\(n_1 = 50\)[/tex]
- [tex]\(sd_2 = 40\)[/tex]
- [tex]\(n_2 = 50\)[/tex]
[tex]\[ SE = \sqrt{\left(\frac{36^2}{50}\right) + \left(\frac{40^2}{50}\right)} = 7.610519036176179 \][/tex]
4. Calculate the Test Statistic:
The test statistic (t) is calculated using the formula:
[tex]\[ t = \frac{(\bar{x}_1 - \bar{x}_2)}{SE} \][/tex]
Where,
- [tex]\(\bar{x}_1 = 1234\)[/tex]
- [tex]\(\bar{x}_2 = 1215\)[/tex]
[tex]\[ t = \frac{(1234 - 1215)}{7.610519036176179} = 2.496544573331274 \][/tex]
5. Determine Degrees of Freedom:
Degrees of freedom (df) for the test are calculated using the formula:
[tex]\[ df = \frac{\left(\frac{sd_1^2}{n_1} + \frac{sd_2^2}{n_2}\right)^2}{\left(\frac{\left(\frac{sd_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{sd_2^2}{n_2}\right)^2}{n_2 - 1}\right)} \][/tex]
[tex]\[ df = \frac{\left(\frac{36^2}{50} + \frac{40^2}{50}\right)^2}{\left(\frac{\left(\frac{36^2}{50}\right)^2}{49} + \frac{\left(\frac{40^2}{50}\right)^2}{49}\right)} = 96.93188817100418 \][/tex]
6. Determine the Critical Value:
For a one-tailed test at [tex]\(\alpha = 0.05\)[/tex] significance level and [tex]\(df = 96.93\)[/tex], the critical value from the t-distribution table is approximately 1.6607.
7. Decision Rule:
Compare the test statistic to the critical value:
- If [tex]\(t > t_{\text{critical}}\)[/tex], we reject the null hypothesis.
Here, [tex]\(t = 2.4965\)[/tex] and [tex]\(t_{\text{critical}} = 1.6607\)[/tex].
Since [tex]\(2.4965 > 1.6607\)[/tex], we reject the null hypothesis.
8. Conclusion:
Since the test statistic is greater than the critical value, we reject the null hypothesis. This means that there is sufficient evidence at the 5% level of significance to conclude that the mean length of life for Type I bulbs is significantly greater than that for Type II bulbs. Therefore, Type I bulbs are superior to Type II bulbs concerning their length of life.
Thanks for using our service. We aim to provide the most accurate answers for all your queries. Visit us again for more insights. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. Get the answers you need at Westonci.ca. Stay informed by returning for our latest expert advice.