Discover the answers to your questions at Westonci.ca, where experts share their knowledge and insights with you. Our platform provides a seamless experience for finding precise answers from a network of experienced professionals. Our platform offers a seamless experience for finding reliable answers from a network of knowledgeable professionals.
Sagot :
To determine which matrix results from the given operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] on the original augmented matrix, we need to carefully apply the operation to the second row of the initial matrix.
Here is the original matrix:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ 1 & 3 & -1 & -9 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
The operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] indicates that each element in the second row should be multiplied by [tex]\(-3\)[/tex].
Let's perform this operation on the second row step by step:
- For the first element of the second row: [tex]\(1 \times -3 = -3\)[/tex]
- For the second element of the second row: [tex]\(3 \times -3 = -9\)[/tex]
- For the third element of the second row: [tex]\(-1 \times -3 = 3\)[/tex]
- For the fourth element of the second row (the augmented part): [tex]\(-9 \times -3 = 27\)[/tex]
So the new second row after applying [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] will be:
[tex]\[ [-3, -9, 3, 27] \][/tex]
Thus, the resulting matrix will be:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Therefore, the correct matrix resulting from the operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
This corresponds to the first given option:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Here is the original matrix:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ 1 & 3 & -1 & -9 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
The operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] indicates that each element in the second row should be multiplied by [tex]\(-3\)[/tex].
Let's perform this operation on the second row step by step:
- For the first element of the second row: [tex]\(1 \times -3 = -3\)[/tex]
- For the second element of the second row: [tex]\(3 \times -3 = -9\)[/tex]
- For the third element of the second row: [tex]\(-1 \times -3 = 3\)[/tex]
- For the fourth element of the second row (the augmented part): [tex]\(-9 \times -3 = 27\)[/tex]
So the new second row after applying [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] will be:
[tex]\[ [-3, -9, 3, 27] \][/tex]
Thus, the resulting matrix will be:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Therefore, the correct matrix resulting from the operation [tex]\(-3 R_2 \leftrightarrow R_2\)[/tex] is:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
This corresponds to the first given option:
[tex]\[ \left[\begin{array}{ccc|c} 1 & 0 & 1 & -1 \\ -3 & -9 & 3 & 27 \\ 3 & 2 & 0 & -2 \end{array}\right] \][/tex]
Thanks for using our platform. We're always here to provide accurate and up-to-date answers to all your queries. Thank you for choosing our platform. We're dedicated to providing the best answers for all your questions. Visit us again. We're glad you visited Westonci.ca. Return anytime for updated answers from our knowledgeable team.