Welcome to Westonci.ca, your go-to destination for finding answers to all your questions. Join our expert community today! Experience the ease of finding accurate answers to your questions from a knowledgeable community of professionals. Our platform provides a seamless experience for finding reliable answers from a network of experienced professionals.
Sagot :
Answer:
(a): The 95% confidence interval is (46.4, 53.6)
(b): The 95% confidence interval is (47.9, 52.1)
(c): Larger sample gives a smaller margin of error.
Step-by-step explanation:
Given
[tex]n = 30[/tex] -- sample size
[tex]\bar x = 50[/tex] -- sample mean
[tex]\sigma = 10[/tex] --- sample standard deviation
Solving (a): The confidence interval of the population mean
Calculate the standard error
[tex]\sigma_x = \frac{\sigma}{\sqrt n}[/tex]
[tex]\sigma_x = \frac{10}{\sqrt {30}}[/tex]
[tex]\sigma_x = \frac{10}{5.478}[/tex]
[tex]\sigma_x = 1.825[/tex]
The 95% confidence interval for the z value is:
[tex]z = 1.960[/tex]
Calculate margin of error (E)
[tex]E = z * \sigma_x[/tex]
[tex]E = 1.960 * 1.825[/tex]
[tex]E = 3.577[/tex]
The confidence bound is:
[tex]Lower = \bar x - E[/tex]
[tex]Lower = 50 - 3.577[/tex]
[tex]Lower = 46.423[/tex]
[tex]Lower = 46.4[/tex] --- approximated
[tex]Upper = \bar x + E[/tex]
[tex]Upper = 50 + 3.577[/tex]
[tex]Upper = 53.577[/tex]
[tex]Upper = 53.6[/tex] --- approximated
So, the 95% confidence interval is (46.4, 53.6)
Solving (b): The confidence interval of the population mean if mean = 90
First, calculate the standard error of the mean
[tex]\sigma_x = \frac{\sigma}{\sqrt n}[/tex]
[tex]\sigma_x = \frac{10}{\sqrt {90}}[/tex]
[tex]\sigma_x = \frac{10}{9.49}[/tex]
[tex]\sigma_x = 1.054[/tex]
The 95% confidence interval for the z value is:
[tex]z = 1.960[/tex]
Calculate margin of error (E)
[tex]E = z * \sigma_x[/tex]
[tex]E = 1.960 * 1.054[/tex]
[tex]E = 2.06584[/tex]
The confidence bound is:
[tex]Lower = \bar x - E[/tex]
[tex]Lower = 50 - 2.06584[/tex]
[tex]Lower = 47.93416[/tex]
[tex]Lower = 47.9[/tex] --- approximated
[tex]Upper = \bar x + E[/tex]
[tex]Upper = 50 + 2.06584[/tex]
[tex]Upper = 52.06584[/tex]
[tex]Upper = 52.1[/tex] --- approximated
So, the 95% confidence interval is (47.9, 52.1)
Solving (c): Effect of larger sample size on margin of error
In (a), we have:
[tex]n = 30[/tex] [tex]E = 3.577[/tex]
In (b), we have:
[tex]n = 90[/tex] [tex]E = 2.06584[/tex]
Notice that the margin of error decreases when the sample size increases.
We appreciate your time. Please revisit us for more reliable answers to any questions you may have. Your visit means a lot to us. Don't hesitate to return for more reliable answers to any questions you may have. Thank you for choosing Westonci.ca as your information source. We look forward to your next visit.